# Virginia Department of Transportation Route 7 Widening Project 

State Project Number: 0007-029-128, B610, C502, P102, R202;
UPC\# 52328

From: Intersection of Route 193
To: Intersection of Route 267
Fairfax County, Virginia

## PRELIMINARY NOISE ANALYSIS

Virginia Department of Transportation
Environmental Division
1401 East Broad Street
Richmond, Virginia 23219

September 2016

## Table of CONTENTS

I. Executive Summary .....  1
II. Introduction and Background ..... 2
III. Noise Analysis Methodology, Terminology and Criteria ..... 2
IV. Noise Monitoring Methodology ..... 4
V. Undeveloped Lands and Permitted Developments ..... 4
VI. Validation and Existing (2015) Conditions ..... 5
VII. Evaluation of Design Year (2040) Noise Levels and Noise Impact Assessment ..... 6
VIII. Noise Abatement Evaluation ..... 14
IX. Construction Noise ..... 27
X. Public Involvement/Local Officials Coordination ..... 28
XI. Conclusion ..... 30

## TABLES

Table 1 - FHWA/VDOT Noise Abatement Criteria
Table 2 -TNM Validation
Table 3 - Noise Impact Summary by CNE
Table 4 - Noise Abatement Acoustical Feasibility and Reasonableness Evaluation Summary
Table 5 -CNE Specific Noise Contours

## Figures

Figure 1 - Regional Location Map
Figures 2-1 through 2-7 - Project Mapping

## APPENDICES

Appendix A - Noise Meter and Acoustical Calibrator Calibration Certificates
Appendix B - Noise Monitoring Data Forms
Appendix C - Noise Monitoring Data (2015)
Appendix D - Traffic Data Summary (CD)
Appendix E - TNM Noise Modeling Data (CD)
Appendix F - HB2577 Documentation
Appendix G - Warranted, Feasible, and Reasonable Worksheets
Appendix H - Sound Levels Table
Appendix I - Insertion Loss Table
Appendix J - References
Appendix K- List of Preparers and Reviewers

## I. Executive Summary

The Virginia Department of Transportation (VDOT), in cooperation with the Federal Highway Administration (FHWA), is studying potential environmental consequences of proposed highway widening on Route 7 between the intersection of Route 267 and Georgetown Pike in Fairfax County, Virginia. The proposed roadway will provide an additional lane on each side of the existing roadway (the additional lane will be on the median side where possible) for a total of six, $12^{\prime}$ lanes with curb and gutter, divided with a $16^{\prime}$ raised grass median, 12 ' turn lanes at intersections, and a $10^{\prime}$ multipurpose asphalt trail on each side. The project length is 6.9 miles. Service drives will be constructed as needed for access to driveways and to complete connections. Bus shelters and pullouts will be considered in the design. Alternative intersection design will be pursued at some of the intersections to improve intersection operation. The existing vertical profiles of westbound and eastbound Route 7 will be held where possible to reduce impacts to surrounding properties. A bridge is proposed at the Difficult Run major stream crossing. Storm water Management will be provided due to the increase in impervious area.

The preliminary noise analysis in this document will focus solely on Common Noise Environments, referred to as CNEs. Noise sensitive receptors within approximately 500 feet of the proposed improvements were considered for this evaluation. This report documents the Existing (2015) and Design Year (2040) Build noise levels associated with the Route 7 Widening Project. A project field view was performed to thoroughly review the project area. During this field view, major sources of acoustic shielding (e.g., terrain lines, building rows, existing noise barriers, privacy fences, etc.) adjacent to the project corridor were noted for inclusion into the noise modeling effort. Noise monitoring was performed at 12 locations, while noise modeling was conducted for 973 additional sites to gain a thorough understanding of the existing noise environment and to determine how the proposed improvements would change the noise levels throughout the project area. Monitored sites were used solely for noise model validation and not for the purposes of predicting Existing (2015) and Design Year (2040) noise impacts.

Noise modeling was completed for Existing (2015) and Design Year (2040) Build conditions. Design Year (2040) Build noise levels were predicted at each modeled receptor site under the proposed widening scenario. Under Design Year (2040) Build conditions a total of 205 receptors representing 173 residences, 13 cemetery grid units, 15 proposed trail units, one soccer field (two units), two playgrounds (seven grid units), and one historic site are predicted to experience noise impacts. Noise barriers were evaluated and determined to be both feasible and reasonable for CNE B and D (Barrier System B1-B5 and D1), CNE C (Barrier System C1-C4), CNE E (E1-E3 System), CNE F (Barrier System F1-F3 and Barrier System F4-F9) CNE G (Barrier System G1-G7, Barrier System G8-G9, and Barrier System G10-G13), CNE H (Barrier System H3-H11), CNE's I, J, and K (Barrier System I1-I6, J1-J4, and K1-K3). A detailed discussion of the noise abatement evaluation follows in Section VII of this report.

No considerable, long-term construction related noise impacts are anticipated. Any noise impacts that do occur as a result of roadway construction measures are anticipated to be temporary in nature and would cease upon completion of the project construction phase.

The findings in this document are based on conceptual information. Therefore, noise barriers that are found to be feasible and reasonable during the preliminary noise analysis may not be found to be feasible and reasonable during the Final Design Noise Analysis. Conversely, noise barriers that were not considered feasible and reasonable may meet the established criteria and be recommended for construction. A Final Design Noise Analysis would be performed for this project based on detailed engineering information. Thus, any conclusions derived in the report should be considered preliminary in nature and subject to change.

## II. Introduction and Background

Impacts associated with noise are often a prime concern when evaluating roadway improvement projects. Roadway construction at a new location or improvements to the existing transportation network may cause impacts to the noise sensitive environment located adjacent to the project corridor. For this reason, FHWA and VDOT have established a noise analysis methodology and associated noise level criteria to assess the potential noise impacts attributed to the construction and use of transportation related projects.

This report details the steps involved in the preliminary noise analysis for the Route 7 Widening Project, including noise monitoring, noise modeling methodologies, results, and impact evaluation. The regional study area can be seen in Figure 1. Relevant information and assumptions used for this analysis are included in this report's appendices.

The proposed project improvements would widen existing Route 7 from two to three general purpose lanes in each direction along the length of the project corridor. The identification of a general widening concept along the length of the study corridor is consistent with FHWA's objective of analyzing transportation solutions on a broad-enough scale to provide meaningful analysis. The proposed improvements can be referenced on Figures 2-1 through 2-7 in this document.

## III. Noise Analysis Methodology, Terminology and Criteria

The methodologies applied to the noise analysis for the Route 7 Widening Project are in accordance with VDOT's "State Noise Abatement Policy" effective July 13, 2011 and the "Highway Traffic Noise Impact Analysis Guidance Manual", updated July 14, 2015. VDOT guidelines are based on Title 23 of the Code of Federal Regulations, Part 772 and the Procedures for Abatement of Highway Traffic Noise and Construction Noise, (23 CFR 772).

To determine the degree of highway noise impact, Noise Abatement Criteria (NAC) have been established for a number of different land use categories that are considered to be sensitive to highway traffic noise. Table 1, located at the end of this report, documents the NAC for the associated activity land use category shown in the adjacent column. The project is considered partially developed with dense areas of residential development, interspersed with mixed commercial and undeveloped land uses. For the purposes of this analysis, the majority of the
land uses are considered Category B, with few Category C and D land uses throughout. Each CNE description will include the category of the land uses analyzed.

Category D land uses address interior noise levels associated with hospitals, libraries, schools, medical facilities, places of worship, public or nonprofit institutions, etc. Interior noise level impacts in the project area were analyzed. To assess potential interior noise impacts, modeling sites are placed in close proximity to the existing structure. The standard noise reduction for masonry construction with modern windows is 25 dBA when comparing exterior versus interior noise levels. Both exterior and interior noise levels are provided in Appendix $\boldsymbol{H}$ in this document.

The NAC are given in terms of an hourly, A-weighted, equivalent noise level. The A-weighted noise level frequency is used for human use areas because it is comprised of the noise level frequencies that are most easily distinguished by the human ear, out of the entire noise level spectrum. Highway traffic noise is categorized as a linear noise source, where varying noise levels occur at a fixed point during a single vehicle pass by. It is acceptable to characterize these fluctuating noise levels with a single number known as the equivalent noise level ( $\mathrm{L}_{\mathrm{eq}}$ ). The $\mathrm{L}_{\mathrm{eq}}$ is the value of a steady noise level that would represent the same acoustic energy as the actual time-varying sound evaluated over the same time period. For highway noise assessments, $\mathrm{L}_{\mathrm{eq}}$ is typically evaluated over a one-hour period.

Noise abatement determination is based on VDOT's three-phased approach. The first phase (Phase 1) distinguishes if a sensitive receptor within a project corridor warrants highway traffic noise abatement. The following describes the Phase 1 warranted criterion, as discussed in VDOT policy. Receptors that satisfy either condition warrants consideration of highway traffic noise abatement.

- Predicted highway traffic noise levels (for the design year) approach or exceed the highway traffic noise abatement criteria in Table 1. "Approach" has been defined by VDOT as $1 \mathrm{~dB}(\mathrm{~A})$ below the noise abatement criteria.
~or~
- A substantial noise increase has been defined by VDOT as a $10 \mathrm{~dB}(\mathrm{~A})$ increase above existing noise levels for all noise sensitive exterior activity categories. A $10 \mathrm{~dB}(\mathrm{~A})$ increase in noise reflects the generally accepted range of a perceived doubling of the loudness.

If traffic noise impact is identified within the project corridor, then consideration of noise abatement measures is necessary. The final decision on whether or not to provide noise abatement along a project corridor will take into account the feasibility of the design and overall cost weighted against the benefit.

Phase 2 and Phase 3 of the three-phased approach are discussed in the noise abatement evaluation, located in Section VII of this report.

## IV. Noise Monitoring Methodology

The identification of noise sensitive land uses with aerial imagery and local government parcel data guided the selection of noise monitoring locations along the project corridor. In order to validate the noise models, noise monitoring was conducted at 12 representative noise sensitive receptor sites. Figures 2-1 through 2-7 show an overview of the Build Alternative and identify the project area and the locations of the 12 noise monitoring sites.

Monitoring was performed at each of the selected noise sensitive receptors using Rion NL-42 sound level meters. The noise meters were placed at each receptor site in a manner that would yield a typical absolute ambient environment noise reading, and allowed for minimal influence from atypical background noise sources. Readings were taken on the A-weighted scale and reported in decibels $(\mathrm{dB}(\mathrm{A})$ ). The noise monitoring equipment meets all requirements of the American National Standard Specifications for Sound Level Meters, ANSI S1.4-1983 (R1991), Type 2, and meets all requirements as defined by FHWA. Noise monitoring was conducted in accordance with the methodologies contained in FHWA-PD-96-046, Measurement of HighwayRelated Noise (FHWA, May 1996).

Short-term noise monitoring was performed on November $17^{\text {th }}$ of 2015 during hours of free flow conditions. Data collected by the sound analyzers included time, average noise level ( $\mathrm{L}_{\mathrm{av}}$ ), maximum noise level ( $\mathrm{L}_{\text {max }}$ ), and instantaneous peak noise level ( $\mathrm{L}_{\mathrm{pk}}$ ) for each recorded interval. The output of the noise meters is $\mathrm{L}_{\mathrm{av}}$, which is the average noise level over the duration of the monitoring test. This data is then converted into an average, hourly noise level ( $\mathrm{L}_{\text {eq }}$ ), for assessment purposes. Additional data collected at each monitoring location included atmospheric conditions, wind speed, background noise sources, and unusual/atypical noise events. Traffic data (vehicle volume and speed) were also video-recorded on all roadways, which were visible from the monitoring sites and substantially contributed to the overall noise levels. Traffic was grouped into one of three categories: cars, medium trucks and heavy trucks, per VDOT procedures. Combined, this data is used during the noise model validation process.

Short-term noise monitoring is not a process to determine design year noise impacts or barrier locations. Short-term noise monitoring provides a level of consistency between what is present in real-world situations and how that is represented in the computer noise model. Short-term monitoring does not need to occur within every CNE to validate the computer noise model. CNEs are groupings of receptor sites that, by location, form distinct communities within the project area. These areas are used to evaluate traffic noise impacts and potential noise mitigation options to residential developments or communities as a whole, as well as for consideration of feasibility and reasonableness of possible noise abatement measures for specific communities.

## V. Undeveloped Lands and Permitted Developments

Highway traffic noise analyses are and will be performed for developed lands as well as undeveloped lands if they are considered "permitted." Undeveloped lands are deemed to be
permitted when there is a definite commitment to develop land with an approved specific design of land use activities as evidenced by the issuance of at least one building permit.

In accordance with the VDOT State Noise Policy, an undeveloped lot is considered to be planned, designed, and programmed if a building permit has been issued by the local authorities prior to the Date of Public Knowledge for the relevant project. VDOT considers the Date of Public Knowledge as the date that the final National Environmental Policy Act (NEPA) approval is made. VDOT has no obligation to provide noise mitigation for any undeveloped land that is permitted or constructed after this date. The Route 7 Widening Project has not yet received NEPA approval and therefore does not have a Date of Public Knowledge.

Coordination with Fairfax County was conducted in January of 2016 to determine whether any undeveloped permitted land uses were present within the project corridor, including Category G. Category G represents undeveloped lands with no permits and no ongoing permitted land uses were defined as a result of this coordination. Coordination will occur again in Final Design to ensure that no new permitted developments have been approved.

## VI. Validation and Existing (2015) Conditions

Computer modeling is the accepted technique for predicting Existing (2015) and Design Year (2040) noise levels associated with traffic-induced noise. Currently, the FHWA Traffic Noise Model (TNM 2.5) is the approved highway noise prediction model. The Traffic Noise Model has been established as a reliable tool for representing noise generated by highway traffic. The information applied to the modeling effort includes the following: highway design files (existing and proposed conceptual design), traffic data, roadway cross-sections, and surveying of terrain. Base mapping and aerial photography were used to identify noise sensitive land uses within the corridor and any terrain features that may shield roadway noise. The majority of the land uses in the project area are residential and categorized as a Category B land use. Although the majority of the receptors are of Category B land use, Category C, D and E land uses are also included in this analysis.

The modeling process begins with model validation, as per VDOT requirements. This is accomplished by comparing the monitored noise levels with noise levels generated by the computer model, using the traffic volumes, speeds, and composition that were witnessed during the monitoring effort. This comparison ensures that reported changes in noise levels between Existing (2015) and Design Year (2040) conditions are due to changes in traffic conditions and not to discrepancies between monitoring and modeling techniques. A difference of three $\mathrm{dB}(\mathrm{A})$ or less between the monitored and modeled level is considered acceptable, since this is the limit of change detectable by the typical human ear. Table 2 provides a summary of the model validation for the existing monitored conditions. Column 4 represents the difference between the modeled levels produced by the noise model (Column 3) and the monitored level (Column 2). Since all 12 analyzed receptors show an equal to or less than $3 \mathrm{~dB}(\mathrm{~A})$ difference between the monitored and modeled noise levels, the model is considered an accurate representation of actual existing conditions throughout the project area.

There are many factors that influence the measured noise levels that may cause differences with computed noise levels of several decibels. Such factors included atmospheric conditions (upwind, neutral or downwind), shielding by structures that may be difficult to model, and the representation of louder vehicles passing during the measurement period.

For the Route 7 Widening Project and as shown in Table 2, receptors R3, R5 and R10 do not validate. This may be due to shielding from privacy fences that were not modeled in existing conditions. Receptor R5 is shielded by a much thicker privacy fence material, therefore the deviation from validation is greater. This methodology represents a true, worst-case condition for sound level prediction

The validated noise model was the base noise model for the remainder of the noise analysis. Modeling sites were added to the validated model to thoroughly predict Existing (2015) noise levels throughout the project corridor. Additional noise modeling was then performed for existing conditions using 2015 traffic data supplied by VDOT (see Appendix D). This modeling step was performed to predict Existing (2015) worst-case noise levels associated with existing worst-case traffic volumes and composition. Columns 3 and 4 of Table 3 provide a summary of the Existing (2015) worst-case noise levels along the project corridor.

Analysis locations were grouped into 14 CNEs which are groupings of receptor sites that, by location, form distinct communities within the project area and have a common noise environment. These areas were used to evaluate traffic noise impacts and potential noise abatement options and to assess the feasibility and reasonableness of potential noise abatement measures for specific communities. Where residential communities or groupings of noise sensitive land use areas exist, both noise monitoring and noise modeling-only sites were grouped into a CNE. A detailed discussion of each CNE and its respective, predicted noise levels is contained in Section VII of this report.

## VII. Evaluation of Design Year (2040) Build Noise Levels and Noise Impact Assessment

Following the development of the existing conditions model and the prediction of Existing (2015) worst-case noise levels, the assessment continued with the prediction of Design Year (2040) Build noise levels. Design Year (2040) Build noise levels were predicted by accounting for the proposed improvements and applying Design Year (2040) traffic volumes and composition to the validated computer model. Design Year (2040) Build noise levels were predicted with the conceptual improvements of the Build Alternative in place and in use.

The Route 7 Widening Project (UPC 52328) geographically overlaps with a bridge replacement project on Route 7 (UPC 82135) that includes a final noise analysis finding of a noise barrier to be feasible and reasonable within the Route 7 Widening project corridor. As such, the proposed noise barrier from UPC 82135 was modeled in the Design Year (2040) Build model as an existing barrier per VDOT guidance.

The next step in the noise analysis is to determine if future noise levels at the noise sensitive receptors would approach or exceed the FHWA/VDOT NAC. If the criteria are approached or exceeded at any receptor, noise mitigation would be considered and evaluated in an attempt to reduce future noise to acceptable levels. The minimum and maximum noise levels associated with the Design Year (2040) Build modeling analysis are summarized in Columns 6 and 7 of Table 3. Noise levels at each receptor site for the Existing (2015) and Design Year (2040) Build Conditions are shown in Appendix $\boldsymbol{H}$.

## Traffic Data for the Noise Analysis

VDOT's Environmental Traffic Data (ENTRADA) tool was used to develop traffic data needed for the Route 7 Widening Project noise analysis. Existing (2015) and Design Year (2040) Build traffic volumes, vehicle composition, and speeds were assigned to proposed roadways.

Traffic data for traffic noise computations were developed by VDOT. Hourly volumes and operating speeds for each roadway segment for the Existing (2015) and Design Year (2040) Build conditions were documented. Per FHWA and VDOT policy, the traffic data used in the noise analysis must produce sound levels that are representative of the worst (loudest) hour of the day. The year 2040 is the defined analysis year for the project-level noise analysis.

Traffic was reported in hourly segments for 24 hours in ENTRADA analysis sheets. Medium and heavy truck percentages were provided separately for each roadway segment.

Additionally, all arterial roadway segments with direct access to Route 7 were analyzed approximately 500 feet north and 500 feet south of ramp termini. In Virginia, the posted speed or operating speed was used to predict the absolute worst-case highway traffic noise levels on Type I federally-funded projects. Specifically, the proposed uninterrupted operating speed was used from Lewinsville Road to Jarett Valley ( 46 mph ). The posted speed ( 55 mph ) represented the worst-case speed for the remainder of the project area.

## Selection of Worst Noise Hour

As required by FHWA and VDOT, the noise analysis was performed for the loudest ("worst noise") hour of the day. Noise levels have been predicted for that hour of the day when the vehicle volume, operating speed, and number of trucks (vehicles with 3 or more axles) combine to produce the worst noise conditions. According to FHWA guidance, the "worst hourly traffic noise impact" occurs at a time when truck volumes and vehicle speeds are the greatest, typically when traffic is free flowing and at or near level of service (LOS) C conditions.

Due to the differing peak traffic periods for Route 7 eastbound and westbound, the loudest hour was identified for the eastbound travel lanes and used for worst-case noise modeling for the sensitive land uses along the east bound travel lanes. Consequently, to predict an absolute worstcase sound level for the sensitive land uses along the west bound travel lanes, the loudest hour was identified by calculating the west bound peak traffic and using that hour for sound level
predictions for the sensitive land uses that are adjacent to the westbound travel lanes. The loudest hours were determined to be 6:00 AM for Route 7 eastbound and 3:00 PM for Route 7 westbound.

Flow control devices such as stop signs and traffic lights were not used in the preliminary design noise analysis because they were not determined to be a significant factor in sound level prediction for this analysis. This was to ensure a "worst-case" noise environment would be modeled. However, flow control devices shall be modeled, where necessary, during the final design phase when more detailed engineering plans will be available.

Federal regulations (23 CFR Part 772) state that if a noise level at any given receptor approaches or exceeds the appropriate abatement criterion, or if predicted traffic noise levels substantially exceed the Existing (2015) noise levels by $10 \mathrm{~dB}(\mathrm{~A})$ ), abatement considerations are warranted. Table 1 summarizes the Federal and State criteria for a variety of activity categories. Upon review of the initial TNM sound level output, there were no areas where the sound levels predicted by the model were much lower than typical ambient conditions witnessed in the project area.

The following describes the locations and predicted sound levels of each CNE in the Route 7 Widening Project study area. The CNEs are shown in Figures 2-1 through 2-7.

## CNE A

CNE A is located south of Route 7 in the western most part of the project and encompasses noise sensitive land uses on Cedar Chase Road, Cedar Chase Court, Reston Parkway, Water Pointe Lane, and Round Pebble Lane. CNE A contains 46 modeling-only sites (A1-A46) which represent 73 residents, The Boyd School - Reston Campus (exterior and interior), North Pointe Fire Station, Great Falls Assisted Living (exterior and interior), and Good Shepherd Lutheran Church (exterior and interior). CNE A also contains one monitoring site (R1) which was used for model validation. The location of the receptor sites are shown on Figure 2-1. The modeled Existing (2015) worst-case noise level within CNE A is predicted to range from $48-63 \mathrm{~dB}(\mathrm{~A})$ as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE A is Route 7. As shown in Columns 6 and 7 of Table 3, the Design Year (2040) Build sound level is predicted to range from $50-66 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at one receptor representing one residence. Since the school, assisted living center, and church are Category D land uses, the prediction of interior noise levels are required. The interior sound levels associated with the school, assisted living center, and the church are shown in Appendix H. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE B

CNE B is located north of Route 7 in the western most part of the project and encompasses noise sensitive land uses on Aidan Run Court, Autumn Mist Lane, Shain Court, Northfalls Court, Bowen Ave, Loran Court, Loran Road, and Utterback Store Road. CNE B contains 60 modeling-
only sites (B1-B60) which represent 60 residences, Seneca Hill Animal Hospital (exterior and interior), MTO Shahmaghsoudi School of Islamic Sufism (exterior and interior), Dranesville Church of the Brethren (interior), and Meadows Farms Nurseries \& Landscaping. CNE B also contains one monitoring site (R2) which was used for model validation. The location of the receptor sites are shown on Figures 2-1 and 2-2. The modeled Existing (2015) worst-case noise levels within CNE B were predicted to range from $50-68 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE B is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from 55-72 $\mathrm{dB}(\mathrm{A})$, with noise impacts at 16 receptors representing 16 residences. Since the school, animal hospital, and church are Category D land uses, the prediction of interior noise levels are required. The interior sound levels associated with the school, animal hospital, and church are shown in Appendix $\boldsymbol{H}$. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE C

CNE C is located south of Route 7 in the western part of the project and encompasses noise sensitive land uses on Stones Throw Drive, Fieldview Drive, Bright Pond Lane, Meadowlook Court, Tommye Lane, Bishopsgate Way, Markell Court, Hunter Gate Way, and Baron Cameron Avenue. CNE C contains 86 modeling-only sites (C1-C86) which represents 102 residences, Great Falls Crossing Community Center (interior), a playground, a basketball court, a picnic area, one swimming pool, and two tennis courts. CNE C also contains one monitoring site (R3) which was used for model validation. The location of the receptor sites are shown on Figures 2$\mathbf{1 , 2 - 2}$ and 2-3. The modeled Existing (2015) worst-case noise levels within CNE C were predicted to range from $45-68 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE C is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $48-71 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at 17 receptors representing 17 residences. Since the community center is a Category D land use, the prediction of interior noise levels is required. The interior sound levels associated with the community center is shown in Appendix H. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE D

CNE D is located north of Route 7 in the western part of the project and encompasses noise sensitive land uses on Utterback Store Road, Great Passage Court, and Great Passage Boulevard. CNE D contains 37 modeling-only sites (D1-D37) which represent seven residences, two Forestville School District soccer fields, and a Forestville School District softball field. The location of the receptor sites are shown on Figure 2-2. The modeled Existing (2015) worst-case noise levels within CNE D were predicted to range from 49-62 dB(A), as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE D is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from 54-69 $\mathrm{dB}(\mathrm{A})$, with noise impacts at three receptors representing one residence and one soccer field (two
units). Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE E

CNE E is located north of Route 7 in the western part of the project and encompasses noise sensitive land uses on Great Passage Boulevard, Kettle Pond Lane, Amanda Drive, Riva Ridge Drive, Piney Pond Drive, Mountain Hope Court, Crippen Court, and Springvale Road. CNE E contains 52 modeling-only sites (E1-E52) which represent 66 residences. CNE E also contains one monitoring site (R4) which was used for model validation. The location of the receptor sites are shown on Figures 2-2 and 2-3. The modeled Existing (2015) worst-case noise levels within CNE E were predicted to range from $48-70 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE E is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from 53-74 dB(A), with noise impacts at 15 receptors representing 16 residences. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE F

CNE F is located north of Route 7 in the center part of the project and encompasses noise sensitive land uses on Springvale Road, Springvale Court, Van Patten Lane, Colvin Run Road, Colvin Meadows Court, Colvin Meadows Lane, Robindale Drive, Hessick Court, Locust Hill Drive, and Trotting Horse Lane. CNE F contains 141 modeling-only sites (F1-F141) which represent 147 residences, Meadows Farms Nurseries \& Landscaping, Colvin Run Mill, and a cemetery. CNE F also contains 12 modeling-only sites (CCT7-CCT18) that represent the existing Cross County Connecter Trail which is going to be relocated due to project design features. Only existing sound levels were calculated for these sites. The location of these sites can be seen on Figure 2-4 (Existing Cross County Connector Trail). The relocated Cross County Connector Trail is represented by eight modeling-only sites (CCTB16-CCTB23). The location of the relocated trail can be seen on Figure 2-4 (Proposed Cross County Connector Trail). CNE F also contains two monitoring sites (R5 \& R6) which were used for model validation. The location of the receptor sites are shown on Figures 2-3, 2-4 and 2-5. The modeled Existing (2015) worst-case noise levels within CNE F were predicted to range from $46-71 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE F is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $53-76 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at 43 receptors representing 38 residences, one historic site, one proposed trail (two units), and one cemetery (four units). Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE G

CNE G is located south of Route 7 in the center part of the project and encompasses noise sensitive land uses on Water Falls Lane, Dunn Meadows Court, Cobble Pond Way, Dunn

Meadows Road, Delta Glenn Court, Newkirk Court, Mill Wheel Lane, Colvin Forest Lane, Scenic View Terrace, Grapes Farm Way, Carpers Farm Court, Middleton Ridge Road, Middleton Court, Difficult Run Court, Tweed Court, and Beulah Road. CNE G contains 177 modeling-only sites (G1-G177) which represent 185 residences, Capital Church (exterior and interior), Chesterbrook Academy Preschool (exterior and interior), and Beulah Dental (interior). CNE G also contains six modeling-only sites (CCT1-CCT6) that represent the existing Cross County Connecter Trail which is going to be relocated due to project design features. Only existing sound levels were calculated for these sites. The location of these sites can be seen on Figure 2-4 (Existing Cross County Connector Trail). The relocated Cross County Connector Trail is represented by 15 modeling-only sites (CCTB1-CCTB15). The location of the relocated trail can be seen on Figure 2-4 (Proposed Cross County Connector Trail). CNE G also contains an existing local trail that will still be present in the future which is represented by seven modeling-only sites (LT1-LT7). CNE G also contains two monitoring sites (R7 \& R8) which were used for model validation. The location of the receptor sites are shown on Figures 23, 2-4 and 2-5. The modeled Existing (2015) worst-case noise level within CNE G is predicted to range from $44-69 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE G is Route 7. As shown in Columns 6 and 7 of Table 3, the Design Year (2040) Build sound level is predicted to range from $48-75 \mathrm{~dB}(A)$, with noise impacts at 51 receptors representing 38 residences, one playground, and one proposed trail ( 13 units). Since the preschool, dentist office, and church are Category D land uses, the prediction of interior noise levels are required. The interior sound levels associated with the pre-school, dentist office, and church are shown in Appendix $\boldsymbol{H}$. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE H

CNE H is located north of Route 7 in the center part of the project and encompasses noise sensitive land uses on Trotting Horse Lane, Fairpine Lane, Forestville Drive, Farmingdale Court, Vernon Drive, Lyons Street, Kenmore Drive, and Towlston Road. CNE H contains 66 modelingonly sites (H1-H66) which represents 65 residences and The Eastern Ridge School (exterior and interior). CNE H also contains one monitoring site (R9) which was used for model validation. The location of the receptor sites are shown on Figures 2-5 and 2-6. The modeled Existing (2015) worst-case noise levels within CNE $H$ were predicted to range from $51-72 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE H is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $57-78 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at 20 receptors representing 16 residences and one playground (six units). Since the school is a Category D land use, the prediction of interior noise levels is required. The interior sound levels associated with the school is shown in Appendix $\boldsymbol{H}$. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

CNE I
CNE I is located south of Route 7 in the center part of the project and encompasses noise sensitive land uses on Beulah Road, Deramus Farm Court, Atwood Road, Robnel Place, Stokley Way, Vanetta Lane, Kilby Glen Drive, and Towlston Road. CNE I contains 66 modeling-only sites (I1-I66) which represents 87 residences, Wolf Trap Nursery, and Fairfax County Fire Station 42. CNE I also contains one monitoring site (R10) which was used for model validation. The location of the receptor sites are shown on Figures 2-5 and 2-6. The modeled Existing (2015) worst-case noise levels within CNE I were predicted to range from $47-69 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE I is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $51-74 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at nine receptors representing nine residences. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE J

CNE J is located south of Route 7 in the center part of the project and encompasses noise sensitive land uses on Towlston Road, Schuman Court, and Windsor Meadows Lane. CNE J contains 31 modeling-only sites (J1-J31) which represents 14 residences, St. Athanasius Roman Catholic Church (interior), and Andrew Chapel Cemetery. The location of the receptor sites are shown on Figure 2-6. The modeled Existing (2015) worst-case noise levels within CNE J were predicted to range from $49-74 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE J is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from 53-74 dB(A), with noise impacts at 11 receptors representing two residences and one cemetery (nine grid units). Since the church is a Category D land use, the prediction of interior noise levels is required. The interior sound levels associated with the church is shown in Appendix $\boldsymbol{H}$. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE K

CNE K is located south of Route 7 in the eastern part of the project and encompasses noise sensitive land uses on Trap Road, Lucky Estates Drive, Timberwolf Court, Trailridge Court, Wolftrap Run Road, and Route 7. CNE K contains 28 modeling-only sites (K1-K28) which represents 22 residences, Andrew Chapel Preschool (exterior and interior), Bethel Baptist Church (exterior and interior), McLean Bible Church (exterior and interior), and Jill's House (exterior and interior). The location of the receptor sites are shown on Figures 2-6 and 2-7. The modeled Existing (2015) worst-case noise levels within CNE K were predicted to range from 48$68 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE K is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $50-70 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at six receptors representing six residences. Since the two churches, the non-profit, and the pre-school are Category D land uses, the prediction of interior noise levels are required. The interior sound levels associated with the
two churches, the non-profit, and the pre-school are shown in Appendix H. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

CNE L

CNE L is located north of Route 7 in the eastern part of the project and encompasses noise sensitive land uses on Route 7, Dreamweaver Court, Brook Road, Gallant Green Drive, Gunnell Court, Woodside Drive, and Lewinsville Road. CNE L contains 35 modeling-only sites (L1L35) which represents 31 residences, Covance Laboratories (interior), Providence Baptist Church (exterior and interior), and St Thomas Episcopal Church \McLean Preschool (exterior and interior). CNE L also contains one monitoring site (R11) which was used for model validation. The location of the receptor sites are shown on Figures 2-6 and 2-7. The modeled Existing (2015) worst-case noise levels within CNE L were predicted to range from 48-72 $\mathrm{dB}(\mathrm{A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE L is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $51-76 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at eight receptors representing eight residences. Since the church, the laboratory, and the pre-school are Category D land uses, the prediction of interior noise levels are required. The interior sound levels associated with the church, the laboratory, and the pre-school are shown in Appendix H. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE M

CNE M is located north of Route 7 in the eastern most part of the project and encompasses noise sensitive land uses on Route 7, Mirador Place, Prestwould Place, Woodhurst Boulevard, and Mayhurst Boulevard. CNE M contains 50 modeling-only sites (M1-M50) which represents 54 residences. The location of the receptor sites are shown on Figure 2-7. Receptor site M1 is a proposed property acquisition under the build alternative; therefore no sound level predictions were made for M1 under the Design Year (2040) Build condition. The modeled Existing (2015) worst-case noise levels within CNE M were predicted to range from 52-67 dB(A), as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE M is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $55-67 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at one receptor representing one residence. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## CNE N

CNE N is located south of Route 7 in the eastern most part of the project and encompasses noise sensitive land uses on Laurel Hill Road, Glenridge Court, Old Ash Grove, Stanbridge Place, Carrington Ridge Lane, Broadstone Place, and Jarret Valley Drive. CNE N contains 60 modeling-only sites (N1-N60) which represents 67 residences and Berea Church of Christ
(exterior and interior). CNE N also contains one monitoring site (R12) which was used for model validation. CNE N also has a feasible and reasonable barrier from the Route 7 over DATR Major Bridge Rehabilitation project (UPC 82135). There were no noise impacts that were identified behind this barrier under the design year 2040; subsequently the barrier was not reevaluated for reasonableness and feasibility per the VDOT's State Noise Abatement Policy. The location of the receptor sites are shown on Figure 2-7. The modeled Existing (2015) worstcase noise levels within CNE N were predicted to range from $47-73 \mathrm{~dB}(\mathrm{~A})$, as shown in Columns 3 and 4 of Table 3. The dominant noise source within CNE N is Route 7. As shown in Columns 6 and 7 of Table 3, Design Year (2040) Build sound levels are predicted to range from $49-72 \mathrm{~dB}(\mathrm{~A})$, with noise impacts at four receptors representing four residences. Since the church is a Category D land use, the prediction of interior noise levels is required. The interior sound levels associated with the church is shown in Appendix $\boldsymbol{H}$. Since sound levels exceed the NAC, noise abatement is warranted and will be discussed in the following section of the report.

## VIII. Noise Abatement Evaluation

Design Year (2040) Build noise levels are predicted to exceed the NAC in 13 out of 15 CNEs; therefore, as per FHWA/VDOT procedures, noise abatement considerations are warranted, as discussed in Phase 1 of VDOT's three-phased approach, for the impacted properties within these CNEs.

Phase 2 and Phase 3 of VDOT's three-phased approach to considering noise abatement and determining the feasibility and reasonableness of noise barriers is discussed below in detail.

## Phase 2: Feasibility Criteria for Noise Barriers

All receptors that meet the warranted criterion must progress to the "feasible" phase. Phase 2 of the noise abatement criteria requires that both of the following acoustical and engineering conditions be considered:

- At least a $5 \mathrm{~dB}(\mathrm{~A})$ highway traffic noise reduction at impacted receptors. Per 23 CFR 772 , FHWA requires the highway agency to determine the number of impacted receptors required to achieve at least $5 \mathrm{~dB}(\mathrm{~A})$ of reduction. VDOT requires that fifty percent ( $50 \%$ ) or more of the impacted receptors experience $5 \mathrm{~dB}(A)$ or more of insertion loss to be feasible; and
- The determination that it is possible to design and construct the noise abatement measure. The factors related to the design and construction include: safety, barrier height, topography, drainage, utilities, maintenance of the abatement measure, maintenance access to adjacent properties, and general access to adjacent properties (i.e. arterial widening projects).
- The noise abatement measure is said to be feasible if it meets both criteria.

FHWA and VDOT guidelines recommend a variety of abatement measures that should be considered in response to transportation-related noise impacts. While noise barriers and/or earth berms are generally the most effective form of noise abatement, additional abatement measures exist that have the potential to provide considerable noise reductions, under certain circumstances. A brief description of VDOT-approved noise abatement measures is provided below:

Traffic Control Measures (TCM): Traffic control measures, such as speed limit restrictions, truck traffic restrictions, and other traffic control measures that may be considered for the reduction of noise emission levels are not practical for this project. Reducing speeds will not be an effective noise mitigation measure since a substantial decrease in speed is necessary to provide adequate noise reduction. Typically, a 10 mph reduction in speed will result in only a 2 $\mathrm{dB}(\mathrm{A})$ decrease in noise level, which is not considered a sufficient level of attenuation to be considered feasible. Likewise, a $2 \mathrm{~dB}(\mathrm{~A})$ change in noise is not perceptible to the human ear. Additionally, a reduction in speed is not practical for this project since the posted speed is already 55 miles per hour.

Alteration of Horizontal and Vertical Alignments: The alteration of the horizontal and vertical alignment has been considered to reduce or eliminate the impacts created by the proposed project. Because residential development is located adjacent to the project corridor over much of its length, it does not allow for meaningful alterations in the horizontal or vertical alignment without significant impacts. Shifting the horizontal alignment to the east or west of its existing location to reduce noise impacts to receptors will create undesirable impacts such as extensive right-of-way acquisition and potentially relocations. Additionally, shifting the roadway alignment away from one group of receptors to reduce noise impacts will cause noise levels to increase at the receptors the alignment is being moved closer to. By maintaining the existing alignment, the project balances impacts to receptors on both sides of the corridor. Further, altering the vertical alignment is not practical because this is an existing roadway with many atgrade connections. Lowering the alignment below the existing grade to reduce noise levels would widen the footprint of the roadway, increasing right-of-way impacts and relocations and making it more difficult to maintain the existing access points. Further, there are bridges and culverts located along the corridor for drainage and the passage of creeks and streams; lowering the roadway is not feasible in these locations.

Acoustical Insulation of Public-Use and Non-Profit Facilities: This noise abatement measure option applies only to public and institutional use buildings. Since no public use or institutional structures are anticipated to have interior noise levels exceeding FHWA's interior NAC, this noise abatement option will not be applied.

Acquisition of Buffering Land: The purchase of property for noise barrier construction or the creation of a "buffer zone" to reduce noise impacts is only considered for predominantly unimproved properties because the amount of property required for this option to be effective
would create significant additional impacts (e.g., in terms of residential displacements), which were determined to outweigh the benefits of land acquisition.

Construction of Berms / Noise Barriers: Construction of noise barriers can be an effective way to reduce noise levels at areas of outdoor activity. Noise barriers can be wall structures, earthen berms, or a combination of the two. The effectiveness of a noise barrier depends on the distance and elevation difference between roadway and receptor and the available placement location for a barrier. Gaps between overlapping noise barriers also decrease the effectiveness of the barrier, as opposed to a single continuous barrier. The barrier's ability to attenuate noise decreases as the gap width increases.

Noise walls and earth berms are often implemented into the highway design in response to the identified noise impacts. The effectiveness of a freestanding (post and panel) noise barrier and an earth berm of equivalent height are relatively consistent; however an earth berm is perceived as a more aesthetically pleasing option. In contrast, the use of earth berms is not always an option due to the excessive space they require adjacent to the roadway corridor. At a standard slope of $2: 1$, every one-foot in height would require four feet of horizontal width. This requirement becomes more complex in urban settings where residential properties often abut the proposed roadway corridor. In these situations, implementation of earth berms can require significant property acquisitions to accommodate noise mitigation, and the cost associated with the acquisition of property to construct a berm can significantly increase the total costs to implement this form of noise mitigation and make it unreasonable.

Availability of fill material to construct the berm also needs to be considered. On proposed projects where proposed grading yields excess waste material, earth berms can often be a cost effective mitigation option. On balance or borrow projects the implementation of earth berms is often an expensive solution due to the need to identify, acquire, and transport the material to the project site. Earth berms may be considered a viable mitigation option throughout the project area, and would be evaluated further where possible in the final design stage.

Additionally, the Code of Virginia (§33.1-223.2:21) states: "Whenever the Commonwealth Transportation Board or the Department plan for or undertake any highway construction or improvement project and such project includes or may include the requirement for the mitigation of traffic noise impacts, first consideration should be given to the use of noise reducing design and low noise pavement materials and techniques in lieu of construction of noise walls or noise barriers. Vegetative screening, such as the planting of appropriate conifers, in such a design would be utilized to act as a visual screen if visual screening is required." Since there is a noise impact, HB 2577 requires coordination with the Project Manager and Environmental Contact to inquire about the possibility of noise reducing design, the usage of low noise pavement, and visual screening. The HB 2577 documentation for this project can be seen in Appendix $\boldsymbol{F}$. Detailed engineering has not been done because this project is a location study; therefore, methods to reduce noise through engineering will be looked at during the design phase of the project.

In summary, due to right-of-way constraints, noise barriers were considered the only form of abatement having the potential to reduce Design Year (2040) Build noise levels.

## Phase 3: Reasonableness Criteria for Noise Barriers

A determination of noise barrier reasonableness will include the consideration of the parameters listed below. The parameters used during the NEPA process are also used during the final design phase when making a determination of noise barrier reasonableness. All of the reasonableness factors must collectively be achieved in order for a noise abatement measure to be deemed reasonable.

- Viewpoints of the benefited receptors

VDOT shall solicit the viewpoints of all benefited receptors through certified mailings and obtain enough responses to document a decision as to whether or not there is a desire for the proposed noise abatement measure. Fifty percent (50\%) or more of the respondents shall be required to favor the noise abatement measure in determining reasonableness. Community views in and of themselves are not sufficient for a barrier to be found reasonable if one or both of the other two reasonableness criteria are not satisfied.

- Cost-effectiveness

Typically, the limiting factor related to barrier reasonableness is the cost effectiveness value, where the total surface area of the barrier is divided by the number of benefited receptors receiving at least a $5 \mathrm{~dB}(\mathrm{~A})$ reduction in noise level. VDOT's approved cost is based on a maximum square footage of abatement per benefited receptor, a value of 1,600 square feet per benefited receptor.

Where multi-family housing includes balconies at elevations that exceed a 30 - ft high barrier or the topography causes receptors to be above the elevation of a $30-\mathrm{ft}$ barrier, these receptors are not assessed for barrier benefits and are not included in the computation of the barrier's reasonableness.

For non-residential properties such as parks and public use facilities, a special calculation is performed in order to quantify the type and duration of activity and compare to the cost effectiveness criterion. The determination is based on cost, severity of impact (both in terms of noise levels and the size of the impacted area and the activity it contains), and amount of noise reduction.

## - Noise Reduction Design Goals

The design goal is a reasonableness factor indicating a specific reduction in noise levels that VDOT uses to identify that a noise abatement measure effectively reduces noise. The design goal establishes a criterion, selected by VDOT, which noise abatement must achieve. VDOT's noise reduction design goal is defined as a $7 \mathrm{~dB}(\mathrm{~A})$ insertion loss for at
least one impacted receptor, meaning that at least one impacted receptor is predicted to achieve a $7 \mathrm{~dB}(\mathrm{~A})$ or greater noise reduction with the proposed barrier in place. The design goal is not the same as acoustic feasibility, which defines the minimum level of effectiveness for a noise abatement measure. Acoustic feasibility indicates that the noise abatement measure can, at a minimum, achieve a discernible reduction in noise levels.

Noise reduction is measured by comparing the future design year build condition pre-and postbarrier noise levels. This difference between unabated and abated noise levels is known as "insertion loss" (IL). It is important to optimize the noise barrier design to achieve the most effective noise barrier in terms of both noise reduction (insertion losses) and cost. Although at least a $5 \mathrm{~dB}(\mathrm{~A})$ reduction is required to meet the feasibility criteria, the following tiered noise barrier abatement goals are used to govern barrier design and optimization.

- Reduction of future highway traffic noise by $7 \mathrm{~dB}(\mathrm{~A})$ at one (1) or more of the impacted receptor sites (required criterion).
- Reduction of future highway traffic noise levels to the low-60-decibel range when practical (desirable).
- Reduction of future highway traffic noise levels to existing noise levels when practical (desirable).

The following is a discussion of the potential abatement measures for the impacted CNEs under the worst-case Design Year (2040) Build Alternative. In some cases, proposed noise abatement provided insertion losses to more than one CNE. These areas will be identified and described as such. Noise abatement was evaluated where noise impacts are predicted to occur. Where a noise barrier was evaluated, the effectiveness was measured in terms of achievable insertion loss. Noise abatement measures in the project area were evaluated at heights ranging from 10 to 30 feet, at two-foot increments. Due to the preliminary nature of this project, detailed elevation and terrain information beyond the roadway surfaces was not available, therefore base elevations of barriers were assumed to be at the proposed edge of pavement. Detailed proposed surfaces will be required to refine barrier placement in the Final Design phase. Detailed noise barriers were not optimized during this abatement analysis, as a more detailed process will be performed in Final Design. Barrier dimensions may change during the Final Design noise analysis. Appendix I list the Design Year (2040) Build noise levels, the abated noise levels, and the net insertion losses for the barriers and barrier systems that were determined to be feasible and reasonable. Feasible and reasonable noise abatement was evaluated based on constructability and the VDOT acoustic design goals. Noise abatement was determined to be both feasible and reasonable for CNE B and D (Barrier System B1-B5 and D1), CNE C (Barrier System C1-C4), CNE E (E1-E3 System), CNE F (Barrier System F1-F3 and Barrier System F4-F9) CNE G (Barrier System G1-G7, Barrier System G8-G9, and Barrier System G10-G13), CNE H (Barrier System H3H11), CNE's I, J, and K (Barrier System I1-I6, J1-J4, and K1-K3). Further study is required in Final Design to refine the abatement options and no commitments on noise abatement are made
until the Final Design phase of the project. Appendix $\boldsymbol{G}$ provides completed warranted, feasible, and reasonable worksheets.

## CNE A

## Barrier A1

Design Year (2040) Build noise levels are predicted to exceed the NAC at one modeling site representing one residence within this portion of CNE A. A noise barrier was evaluated for this specific impact within CNE A along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 1,257 feet (see Table 4), with an average height of 18 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at the one impacted receptor (see Appendix I). The barrier does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at the one impacted receptor at the evaluated height. The evaluated barrier also benefits four non-impacted receptors which represents eight residences. The total area for the barrier is 22,626 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 2,514, which exceeds the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier A1 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier is shown in Table 4.

## CNE B and D

## Barrier System B1-B5 and D1

Design Year (2040) Build noise levels are predicted to exceed the NAC at 18 modeling sites representing 16 residences and one soccer field ( 2 units) within CNE B and this portion of CNE D. A noise barrier system was evaluated for these specific impacts within CNE B and a portion of CNE D along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 5,616 feet (see Table 4), with an average height of 14 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at all 18 of the impacted receptors (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at ten of impacted receptors at the evaluated height. The evaluated barrier system also benefits 37 non-impacted receptors which represent 32 residences, one soccer field (five grid units), one softball field (three grid units), and one commercial land use. The total area for the barrier system is 78,624 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,333, which is within the allowable (MaxSF/BR) value of 1,600. Therefore, Barrier System B1-B5 and D1 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## CNE C

## Barrier System C1-C4

Design Year (2040) Build noise levels are predicted to exceed the NAC at 17 modeling sites representing 18 residences within this portion of CNE C. A noise barrier system was evaluated for these specific impacts within CNE C along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 6,291 feet (see Table 4), with an average height of 18 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 16 of the impacted receptors which represent 17 residences (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 16 impacted receptors at the evaluated height. The evaluated noise barrier system also benefits 44 nonimpacted receptors which represent 58 residences. The total area for the barrier is 113,238 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,510 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System C1-C4 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier is shown in Table 4.

## CNE D

## Barrier D2

Design Year (2040) Build noise levels are predicted to exceed the NAC at one modeling site representing one residence within CNE D. A noise barrier was evaluated for this specific impact within CNE D along the westbound travel lanes of Route 7. In total, the preliminary barrier evaluated for this project has a length of 969 feet (see Table 4), with an average height of 18 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at the one impacted receptor (see Appendix I). The barrier does meet the design goal of an insertion loss (IL) of 7 $\mathrm{dB}(\mathrm{A})$ at the one impacted receptor at the evaluated height. The evaluated barrier system also benefits one non-impacted receptor which represents one residence. The total area for the barrier is 17,442 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 8,721 , which exceeds the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier D2 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier is shown in Table 4.

## CNE E

## Barrier System E1-E3

Design Year (2040) Build noise levels are predicted to exceed the NAC at 15 modeling sites representing 16 residences within CNE E. A noise barrier system was evaluated for these specific impacts within CNE E along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 3,577 feet (see Table 4), with
an average height of 14 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 14 impacted receptors which represents 15 residences (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 13 impacted receptors at the evaluated height. The evaluated barrier system also benefits 17 non-impacted receptors which represents 20 residences. The total area for the barrier system is 50,078 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,431 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System E1-E3 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## CNE F

## Barrier System F1-F3

Design Year (2040) Build noise levels are predicted to exceed the NAC at 22 modeling sites representing 19 residences and one cemetery (four grid units) within this portion of CNE F. A noise barrier system was evaluated for these specific impacts within CNE F along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 3,637 feet (see Table 4), with an average height of 12 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 19 of the impacted receptors which represents 17 residences and one cemetery (three grid units) (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 13 of the impacted receptors at the evaluated height. The evaluated barrier system also benefits 14 non-impacted receptors which represents 15 residences. The total area for the barrier system is 43,644 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,247 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System F1-F3 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System F4-F9

Design Year (2040) Build noise levels are predicted to exceed the NAC at 21 modeling sites representing 19 residences, one historic site, and one proposed trail (two grid units) within this portion of CNE F. A noise barrier system was evaluated for these specific impacts within CNE F along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 4,814 feet (see Table 4), with an average height of 20 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at all 21 impacted receptors, (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of 7 $\mathrm{dB}(\mathrm{A})$ at 16 of the impacted receptors at the evaluated height. The evaluated barrier system also benefits 47 non-impacted receptors which represent 46 residences and one proposed trail (six grid units). The total area for the barrier system is 96,280 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor
(MaxSF/BR) value of 1,301 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System F4-F8 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## CNE G

## Barrier System G1-G7

Design Year (2040) Build noise levels are predicted to exceed the NAC at 17 modeling sites representing 18 residences within this portion of CNE G. A noise barrier system was evaluated for these specific impacts within CNE G along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 5,478 feet (see Table 4), with an average height of 12 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 16 impacted receptors which represent 17 residences (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 16 impacted receptors at the evaluated height. The evaluated barrier system also benefits 38 non-impacted receptors which represent 42 residences. The total area for the barrier system is 65,736 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,114 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System G1-G7 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System G8-G9

Design Year (2040) Build noise levels are predicted to exceed the NAC at 13 modeling sites representing a proposed trail ( 13 grid units) within this portion of CNE G. A noise barrier system was evaluated for these specific impacts within CNE G along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 1,643 feet (see Table 4), with an average height of 13 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at nine of the impacted receptors (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at nine of the impacted receptors at the evaluated height. The evaluated barrier system also benefits five non-impacted receptors which represent one residence, one existing trail (two grid units), and one proposed trail (two grid units). The total area for the barrier system is 20,513 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,465 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System G8-G9 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System G10-G16

Design Year (2040) Build noise levels are predicted to exceed the NAC at 21 modeling sites representing 20 residences and one playground within this portion of CNE G. A noise barrier system was evaluated for these specific impacts within CNE G along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 3,690 feet (see Table 4), with an average height of 11 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 19 of the impacted receptors which represent 18 residences and one playground (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 12 impacted receptors at the evaluated height. The evaluated barrier system also benefits three non-impacted receptors which represent two residences and one dentist office. The total area for the barrier system is 39,250 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,784, which exceeds the allowable (MaxSF/BR) value of 1,600. Therefore, Barrier System G10-G16 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System G10-G13

Design Year (2040) Build noise levels are predicted to exceed the NAC at 18 modeling sites representing 18 residences within this portion of CNE G. A noise barrier system was evaluated for these specific impacts within CNE G along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 2,661 feet (see Table 4), with an average height of 11 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at 16 impacted receptors which represent 16 residences (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 11 impacted receptors at the evaluated height. The evaluated barrier system also benefits two non-impacted receptors which represent two residences. The total area for the barrier system is 28,185 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,566 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System G10-G13 is considered feasible and reasonable at this time and recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System G14-G16

Design Year (2040) Build noise levels are predicted to exceed the NAC at three modeling sites representing two residences and a playground within this portion of CNE G. A noise barrier system was evaluated for these specific impacts within CNE G along the eastbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 1,108 feet (see Table 4), with an average height of 10 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at two impacted receptors which represent one residence and one playground (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at one of the three impacted receptors at the evaluated height. The
evaluated barrier system also benefits one non-impacted receptor which represents one dentist office. The total area for the barrier system is 11,080 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 3,693, which exceeds the allowable (MaxSF/BR) value of 1,600. Therefore, Barrier System G14G16 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier system is shown in Table 4.

## CNE H

## Barrier System H1-H2

Design Year (2040) Build noise levels are predicted to exceed the NAC at three modeling sites representing three residences within this portion of CNE H. A noise barrier system was evaluated for these specific impacts within CNE H along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 738 feet (see Table 4), with an average height of 10 feet. The noise barrier system achieves feasible ( $>5$ $\mathrm{dB}(\mathrm{A})$ ) noise reduction at all three of the impacted sites (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at one of the impacted receptors at the evaluated height. The total area for the barrier system is 7,380 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 2,460, which exceeds the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System H1-H2 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System H3-H11

Design Year (2040) Build noise levels are predicted to exceed the NAC at 17 modeling sites representing 13 residences and one playground (six units) within this portion of CNE H. A noise barrier system was evaluated for these specific impacts within CNE H along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 3,408 feet (see Table 4), with an average height of 12 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reduction at 16 of the impacted sites which represent 13 residences and one playground (five units) (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 13 of the impacted receptors at the evaluated height. The barrier system also benefits 17 non-impacted receptors which represent 19 residences. The total area for the barrier system is 40,896 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,105 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System H3-H11 is considered feasible and reasonable at this time and is recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## CNE I, CNE J, and CNE K

## Barrier System I1-I6, J1-J4, and K1-K3

Design Year (2040) Build noise levels are predicted to exceed the NAC at 26 modeling sites representing 17 residences and one cemetery (nine grid units) within CNE I, CNE J, and CNE K. A noise barrier system was evaluated for the specific impacts within CNE I, J and K along the eastbound travel lanes of Route 7. Since the barriers are in close proximity to each other, each individual barrier provides benefit to the next adjacent CNE. Therefore for the purposes of this preliminary study, the noise barrier for CNEs I, J and K were evaluated as one system. In total, the preliminary barrier system evaluated has a combined length of 6,242 feet (see Table 4), with an average height of 14 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reduction at 25 impacted receptor sites which represents 16 residences and one cemetery (nine grid units) (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at 16 impacted receptors at the evaluated height. The barrier system also benefits 46 non-impacted receptors which represent 44 residences, one cemetery (six grid units), one church (interior), one preschool (interior and exterior), and one non-profit organization (interior and exterior). The total area for the barrier system is 87,388 square feet. It is considered reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,092 , which is within the allowable (MaxSF/BR) value of 1,600 . Therefore, the barrier system I1-I6, J1-J4, and K1-K3 is considered feasible and reasonable at this time and is recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

CNE L

## Barrier System L1-L9

Design Year (2040) Build noise levels are predicted to exceed the NAC at eight modeling sites representing eight residences within this portion of CNE L. A noise barrier system was evaluated for the specific impacts within CNE L along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 2,181 feet (see Table 4), with an average height of 10 feet. The noise barrier system achieves feasible ( $>5$ $\mathrm{dB}(\mathrm{A})$ ) noise reduction at six of the impacted receptors (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at two of the impacted receptors at the evaluated height. The total area for the barrier system is 21,810 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 3,635, which exceeds the allowable (MaxSF/BR) value of 1,600. Therefore, Barrier System L1-L9 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier System L1-L3

Design Year (2040) Build noise levels are predicted to exceed the NAC at four modeling sites representing four residences within this portion of CNE L. A noise barrier system was evaluated for this specific impact within CNE L along the westbound travel lanes of Route 7. In total, the preliminary barrier system evaluated for this project has a length of 887 feet (see Table 4), with an average height of 12 feet. The noise barrier system achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reduction at four of the impacted receptors (see Appendix I). The barrier system does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at two of the impacted receptors at the evaluated height. The total area for the barrier system is 10,664 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 2,661, which exceeds the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System L1-L3 is considered feasible, but not reasonable at this time. A summary of the abatement for this barrier system is shown in Table 4.

CNE M

## Barrier M1

Design Year (2040) Build noise levels are predicted to exceed the NAC at one modeling site representing one residence within CNE M. A noise barrier was evaluated for this specific impact within CNE M along the eastbound travel lanes of Route 7. In total, the preliminary barrier evaluated for this project has a length of 530 feet (see Table 4), with an average height of 12 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at the impacted receptor (see Appendix I). The barrier does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at the impacted receptor at the evaluated height. The total area for the barrier is 6,360 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 6,360 being above the allowable (MaxSF/BR) value of 1,600. Therefore, Barrier M1 is considered feasible, but not reasonable at this time and is not recommended for further consideration. A summary of the abatement for this barrier is shown in Table 4.

## CNE N

## Barrier System N1-N3

Design Year (2040) Build noise levels are predicted to exceed the NAC at three modeling sites representing three residences within this portion CNE N. A noise barrier system was evaluated for this specific impact within this portion CNE N along the eastbound travel lanes of Route 7. In total, the preliminary barrier evaluated for this project has a length of 1,408 feet (see Table 4), with an average height of 10 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at all three impacted receptors (see Appendix I). The barrier does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at one impacted receptor at the evaluated height. The evaluated barrier system also benefits five non-impacted receptors which represent five
residences. The total area for the barrier is 14,080 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 1,760 being above the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier System N1-N3 is considered feasible, but not reasonable at this time and is not recommended for further consideration. A summary of the abatement for this barrier system is shown in Table 4.

## Barrier N4

Design Year (2040) Build noise levels are predicted to exceed the NAC at one modeling site representing one residence within this portion CNE N. A noise barrier was evaluated for this specific impact within this portion CNE N along the eastbound travel lanes of Route 7. In total, the preliminary barrier evaluated for this project has a length of 290 feet (see Table 4), with an average height of 12 feet. The noise barrier achieves feasible ( $>5 \mathrm{~dB}(\mathrm{~A})$ ) noise reductions at the impacted receptor (see Appendix I). The barrier does meet the design goal of an insertion loss (IL) of $7 \mathrm{~dB}(\mathrm{~A})$ at the impacted receptor at the evaluated height. The total area for the barrier is 3,480 square feet. It is considered not reasonable due to its Maximum Square Footage of Abatement per Benefited Receptor (MaxSF/BR) value of 3,480 being above the allowable (MaxSF/BR) value of 1,600 . Therefore, Barrier N1 is considered feasible, but not reasonable at this time and is not recommended for further consideration. A summary of the abatement for this barrier is shown in Table 4.

## IX. Construction Noise

VDOT is also concerned with noise generated during the construction phase of the proposed project. While the degree of construction noise impact will vary, it is directly related to the types and number of equipment used and the proximity to the noise sensitive land uses within the project area. Land uses that are sensitive to traffic noise are also potentially sensitive to construction noise.

Any construction noise impacts that do occur as a result of roadway construction measures are anticipated to be temporary in nature and will cease upon completion of the project construction phase. A method of controlling construction noise is to establish the maximum level of noise that construction operations can generate.
In view of this, VDOT has developed and FHWA has approved a specification that establishes construction noise limits. This specification can be found in VDOT's 2007 Road and Bridge Specifications, Section 107.16(b.3), "Noise". The contractor will be required to conform to this specification to reduce the impact of construction noise on the surrounding community.

The specifications have been reproduced below:

- The Contractor's operations shall be performed so that exterior noise levels measured during a noise sensitive activity shall not exceed 80 decibels. Such noise level measurements shall be taken at a point on the perimeter of the construction limit that is closest to the adjoining property on which a noise sensitive activity is occurring. A noise sensitive activity is any activity for which lowered noise levels are essential if the activity is to serve its intended purpose and not present an unreasonable public nuisance. Such
activities include, but are not limited to, those associated with residences, hospitals, nursing homes, churches, schools, libraries, parks, and recreational areas.
- VDOT may monitor construction-related noise. If construction noise levels exceed 80 decibels during noise sensitive activities, the Contractor shall take corrective action before proceeding with operations. The Contractor shall be responsible for costs associated with the abatement of construction noise and the delay of operations attributable to noncompliance with these requirements.
- VDOT may prohibit or restrict to certain portions of the project any work that produces objectionable noise between 10 PM and 6 AM . If other hours are established by local ordinance, the local ordinance shall govern.
- Equipment shall in no way be altered so as to result in noise levels that are greater than those produced by the original equipment.
- When feasible, the Contractor shall establish haul routes that direct his vehicles away from developed areas and ensure that noise from hauling operations is kept to a minimum.
- These requirements shall not be applicable if the noise produced by sources other than the Contractor's operation at the point of reception is greater than the noise from the Contractor's operation at the same point.


## $\underline{\text { X. Public Involvement/Local Officials Coordination }}$

FHWA and VDOT policies require that VDOT provides certain information to local officials within whose jurisdiction the highway project is located to minimize future traffic noise impacts of Type I projects on currently undeveloped lands (Type I projects involve highway improvements with noise analysis). This information must include details on noise-compatible land-use planning and noise impact zones for undeveloped lands within the project corridor. The aforementioned details are provided below and shown on the graphics on Figures 2-1 through 27. Additional information about VDOT's noise abatement program has also been included in this section.

Sections 12.1 and 12.2 of VDOT's 2011 Highway Traffic Noise Impact Analysis Guidance Manual outline VDOT's approach to communication with local officials, and provide information and resources on highway noise and noise-compatible land-use planning. VDOT's intention is to assist local officials in planning the uses of undeveloped land adjacent to highways to minimize the potential impacts of highway traffic noise.

Entering the Quiet Zone is a brochure that provides general information and examples to elected officials, planners, developers, and the general public about the problem of traffic noise and effective responses to the noise. The following is a link to this brochure on FHWA's website:
http://www.fhwa.dot.gov/environment/noise/noise_compatible_planning/federal_approach/land_ use/qz00.cfm.

A wide variety of administrative strategies may be used to minimize or eliminate potential highway noise impacts, thereby preventing the need or desire for costly noise abatement structures such as noise barriers in future years. There are five broad categories of such strategies:

- Zoning,
- Other legal restrictions (subdivision control, building codes, health codes),
- Municipal ownership or control of the land,
- Financial incentives for compatible development, and
- Educational and advisory services.

The Audible Landscape: A Manual for Highway and Land Use is a very well-written and comprehensive guide addressing these noise-compatible land use planning strategies, with detailed information. This document is available through FHWA's website, at http://www.fhwa.dot.gov/environment/noise/noise_compatible_planning/federal_approach/audib le_landscape/al00.cfm.

Also required under the revised FHWA and VDOT noise policies is information on the noise impact zones adjacent to project roadways in undeveloped lands. To determine these zones, noise levels are computed at various distances from the edge of the project roadways in each of the undeveloped areas of the project study area. The distances from the edge of the roadway to the NAC noise levels are then determined through interpolation. Distances vary in the project corridor due to changes in traffic volumes or terrain features. The distances for this project are summarized in Table 5. Any noise sensitive sites within these zones should be considered noise impacted if no barrier is present to reduce noise levels.

Noise level contours are lines of equal noise exposure that typically parallel roadway alignments. Highway traffic noise is considered a linear noise source and noise levels can drop considerably over distance. The degree that noise levels decrease can vary based on a number of different factors including objects that shield the roadway noise, terrain features and ground cover type (e.g., pavement, grass or snow). The use of noise level contours have become increasingly popular over the last several years, as they have been implemented in planning programs for undeveloped areas with roadway noise influence. Through conscious planning efforts and noise contour generation, municipal officials can restrict future development inside the noise impact zone (i.e., the area within the $66 \mathrm{~dB}(\mathrm{~A})$ noise contour). Figures 2-1 through 2-7 show the approximate $66 \mathrm{~dB}(\mathrm{~A})$ noise level contours when considering the improvements made to the Route 7 Widening Project with the Design Year (2040) Build traffic volumes, speeds and composition. Table 5 shows the approximate distance of the $66 \mathrm{~dB}(\mathrm{~A})$ contour line from the centerline of the 2040 Build Alternative to each CNE throughout the project area.

## XI. Conclusion

Under Design Year (2040) Build conditions a total of 205 receptors representing 173 residences, 13 cemetery grid units, 15 proposed trail units, one soccer field (two units), two playgrounds (seven grid units), and one historic site are predicted to experience noise impacts. Noise barriers were evaluated for a worst-case alternative and determined to be both feasible and reasonable for CNE B and D (Barrier System B1-B5 and D1), CNE C (Barrier System C1-C4), CNE E (E1-E3 System), CNE F (Barrier System F1-F3 and Barrier System F4-F9) CNE G (Barrier System G1-G7, Barrier System G8-G9, and Barrier System G10-G13), CNE H (Barrier System H3H11), CNE's I, J, and K (Barrier System I1-I6, J1-J4, and K1-K3). Further study is required in Final Design to refine the abatement options and no commitments on noise abatement are made until the Final Design phase of the project.

| TABLE 1Route 7 Widening ProjectFHWA/VDOT Noise Abatement CriteriaHourly-A-Weighted Sound Level in Decibels $(d B(A))^{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Activity Category | Activity $\mathbf{L}_{\mathrm{eq}}(\mathbf{h})^{4}$ | Criteria ${ }^{2}$ <br> L10 (h) | Evaluation Location | Description of Activity Category |
| A | 57 | 60 | Exterior | Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose. |
| $\mathrm{B}^{3}$ | 67 | 70 | Exterior | Residential. |
| $\mathrm{C}^{3}$ | 67 | 70 | Exterior | Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or non-profit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings. |
| D | 52 | 55 | Interior | Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or non-profit institutional structures, radio studios, recording studios, schools, and television studios. |
| $\mathbf{E}^{3}$ | 72 | 75 | Exterior | Hotels, motels, offices, restaurants/bars, and other developed lands, properties of activities not included in A-D or F. |
| F | -- | -- | Exterior | Agriculture, airports, bus yards, emergency services, industrial logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing. |
| G | -- | -- | -- | Undeveloped lands that are not permitted. |
| 1 Either Leq (h) or L10 (h) (but not both) may be used on a project. <br> 2 The Leq (h) and L10 (h) Activity Criteria values are for impact determination only, and are not design standards for noise abatement measure. <br> Includes undeveloped lands permitted for this Activity Criteria. <br> $4 \quad$ VDOT utilizes the $\operatorname{Leq}(\mathrm{h})$ designation. |  |  |  |  |


| TABLE 2 <br> Route 7 Widening Project TNM Validation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 |
| Receptor | Monitored Level | Modeled Level | Difference | Validated |
| R1 | 57.2 | 58.2 | 1.0 | Yes |
| R2 | 63.2 | 65.7 | 2.5 | Yes |
| R3 | 58.1 | 61.9 | 3.8 | No |
| R4 | 60.7 | 63.6 | 2.9 | Yes |
| R5 | 59.5 | 68.4 | 8.9 | No |
| R6 | 60.1 | 62.9 | 2.8 | Yes |
| R7 | 64.4 | 63.7 | -0.7 | Yes |
| R8 | 63.3 | 66.3 | 3.0 | Yes |
| R9 | 58.1 | 60.0 | 1.9 | Yes |
| R10 | 62.9 | 68.6 | 5.7 | No |
| R11 | 63.4 | 66.3 | 2.9 | Yes |
| R12 | 65.2 | 68.0 | 2.8 | Yes |
| Differnce between Monitored and Modeled Leq greater than $3 \mathrm{db}(\mathrm{A})$ |  |  |  |  |


| Table 3 <br> Route 7 Widening Project <br> Noise Impact Summary by CNE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| CNE | Site Representation | Existing 2015 Noise Level Range (dB(A)) |  |  | Build 2040 Noise Level Range (dB(A)) |  |  |
|  |  | Min | Max | \# Impacts | Min | Max | \# Impacts |
| A | 73 Residences, 1 School, 1 Fire Station, 1 Church, 1 Assisted Living Center | 48 (29) | 63 (32) | 0 Impacts | 50 (31) | 66 (35) | 1 Residence |
| B | 60 Residences, 1 School, 1 Animal Hospital, 1 Church, 1 Tree Nursery | 50 (25) | 68 (44) | 8 Residences | 55 (31) | 72 (46) | 16 Residences |
| C | 102 Residences, 1 Pool, 1 Community Center, 1 Playground, 2 Tennis Courts, 1 Basketball Court, 1 Picnic Area | 45 (28) | 68 (28) | 3 Residences | 48 (31) | 71 (31) | 18 Residences |
| D | 7 Residences, 2 Soccer Fields, 1 Softball Field | 49 | 62 | 0 Impacts | 54 | 69 | 1 Residence and 1 Soccer Field (2 Units) |
| E | 66 Residences | 48 | 70 | 7 Residences | 53 | 74 | 16 Residences |
| F | 147 Residences, 1 Cemetery, 1 Historic Site, 1 Tree Nursery, 1 Proposed Trail | 46 | 71 | 8 Residences, 1 Cemetery (2 Units), 1 Trail (1 Unit), 1 Running Trail (1 Unit) | 53 | 76 | 38 Residences, 1 Cemetery (4 Units), 1 Historic Site, 1 Proposed Trail (2 Units) |
| G | 185 Residences, 1 Church, 1 PreSchool, 1 Dentist Office, 1 Existing Trail, 1 Proposed Trail | 44 (31) | 69 (46) | 17 Residences | 48 (36) | 75 (49) | 38 Residences, 1 Playground, 1 Proposed Trail (13 Units) |
| H | 65 Residences, 1 School | 51 (36) | 72 (36) | 12 Residences | 57 (43) | 78 (43) | 16 Residences and 1 Playground (6 Units) |
| I | 87 Residences, 1 Fire Station, 1 Nursery | 47 | 69 | 3 Residences | 51 | 74 | 9 Residences |
| J | 14 Residences, 1 Church, 1 Cemetery | 49 (45) | 74 (45) | 2 Residences, 1 Cemetery (5 Units) | 53 (47) | 74 (47) | 2 Residences, 1 Cemetery (9 Units) |
| K | 22 Residences, 2 Churches, 1 NonProfit, 1 Pre-School | 48 (24) | 68 (42) | 2 Residences | 50 (24) | 70 (43) | 6 Residences |
| L | 31 Residences, 1 Pre-School, 1 Church, 1 Laboratory | 48 (35) | 72 (38) | 5 Residences | 51 (38) | 76 (43) | 8 Residences |
| M | 54 Residences | 52 | 67 | 1 Residence | 55 | 67 | 1 Residence |
| N | 67 Residences, 1 Church | 47 (47) | 73 (47) | 2 Residences | 49 (40) | 72 (40) | 4 Residences |
| ( ) Indicates interior sound level |  |  |  |  |  |  |  |

## TABLE 4

## Route 7 Widening Project

Noise Abatement Acoustical Feasibility and Reasonableness Evaluation Summary

|  | Proposed Barrier |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE | Barrier I.D. | Number of <br> Benefited Receptor <br> Units | Combined Noise Barrier Length (ft.) | Average Noise Barrier Height (ft.) | Square Footage (SF) | Net SF per Benefited Receptor | Barrier Cost* | Feasible? | Reasonable? |
| A | A1 | 9 | 1,257 | 18 | 22,626 | 2,514 | \$701,406 | Yes | No |
| B/D | B1 - B5 and D1 System | 59 | 5,616 | 14 | 78,624 | 1,333 | \$2,437,344 | Yes | Yes |
| C | C1-C4 System | 75 | 6,291 | 18 | 113,238 | 1,510 | \$3,510,378 | Yes | Yes |
| D | D2 | 2 | 969 | 18 | 17,442 | 8,721 | \$540,702 | Yes | No |
| E | E1-E3 System | 35 | 3,577 | 14 | 50,078 | 1,431 | \$1,552,418 | Yes | Yes |
| F | F1-F3 System | 35 | 3,637 | 12 | 43,644 | 1,247 | \$1,352,964 | Yes | Yes |
| F | F4 - F9 System | 74 | 4,814 | 20 | 96,280 | 1,301 | \$2,984,680 | Yes | Yes |
|  | G1-G7 System | 59 | 5,478 | 12 | 65,736 | 1,114 | \$2,037,816 | Yes | Yes |
|  | G8-G9 System | 14 | 1,643 | 13 | 20,513 | 1,465 | \$635,903 | Yes | Yes |
| G | G10-G16 System | 22 | 3,690 | 11 | 39,250 | 1,784 | \$1,216,750 | Yes | No |
|  | G10-G13 System | 18 | 2,661 | 11 | 28,185 | 1,566 | \$873,735 | Yes | Yes |
|  | G14-G16 System | 3 | 1,108 | 10 | 11,080 | 3,693 | \$343,480 | Yes | No |
| H | H1 - H2 System | 3 | 738 | 10 | 7,380 | 2,460 | \$228,780 | Yes | No |
| H | H3-H11 System | 37 | 3,408 | 12 | 40,896 | 1,105 | \$1,267,776 | Yes | Yes |
| I/J/K | I1- I6, J1-J4 and K1 - K3 System | 80 | 6,242 | 14 | 87,388 | 1,092 | \$2,709,028 | Yes | Yes |
| L | L1 - L9 System | 6 | 2,181 | 10 | 21,810 | 3,635 | \$676,110 | Yes | No |
| L | L1-L3 | 4 | 887 | 12 | 10,644 | 2,661 | \$329,964 | Yes | No |
| M | M1 | 1 | 530 | 12 | 6,360 | 6,360 | \$197,160 | Yes | No |
| N | N1 - N3 System | 8 | 1,408 | 10 | 14,080 | 1,760 | \$436,480 | Yes | No |
| N | N4 | 1 | 290 | 12 | 3,480 | 3,480 | \$107,880 | Yes | No |

Indicates the Barriers/Barrier Systems shown in Figures 2-1 through 2-7 and Appendix I (Insertion Loss Table)

* $48.50 / \mathrm{ft}^{2}$ for projects with less than $50,000 \mathrm{ft}^{2}$ of barrier construction, and $\$ 31 / \mathrm{ft}^{2}$ for projects with more than $50,000 \mathrm{ft}^{2}$ of feasible/reasonable barriers.

Reduced cost of $\$ 31 / \mathrm{ft}^{2}$ only applicable when barriers are considered both feasible and reasonable

| TABLE 5 <br> Route <br> Distance from Widening Project <br> Centerline of Proposed Design Travel Lanes <br> CNE Specific Noise Contours |  |
| :---: | :---: |
| Design Year (2040) Noise Level Contours <br> 66 dB(A) |  |
| CNE | Distance (feet) |
| A | 180 |
| B | $110-190$ |
| C | $110-250$ |
| D | $180-240$ |
| E | $75-340$ |
| F | $110-500$ |
| G | $125-320$ |
| H | $140-260$ |
| I | $100-190$ |
| J | $150-290$ |
| K | $100-290$ |
| L | $70-270$ |
| M | 170 |
| N | $90-170$ |











## Appendix A

Noise Meter and Acoustical Calibrator Calibration Certificates


## Inspection Certificate

INSPECTOR


We hereby certify that this product has been tested and calibrated at our factory according to RION specifications and that the product satisfies all relevant requirements.

RIOS CO., LTD. 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

Sound and Vibration Measuring Instrument Section Product information and software downloads can be found on our web-site: http://svmeas.rion.co.jp/.
Please check It out.

ISO 17025：2005，ANSI／NCSL 2540：1994 Part 1 ACCREDITED by NVLAP．（an LLAC MRA signatory）


NVLAP Lab Code：200625－0

## Calibration Certificate No． 34210

| Mostrument： | Sound Level Meter |
| :--- | :--- |
| Model： | NL42 |
| Manufocturer： | Rlon |
| Serial number： | 01122580 |
| Tested with： | Microphone UC52 s／n 144597 |
|  | Preamplifier NH24 s／n 22621 |
| Type（class）： | 2 |
| Customer： | McCormick Taylor，Inc． |
| Tel／Fox： | $215-592-4200$ ext． $1313 /$ |


| Date Calibrated：7／7／2015 Col Due： |  |  |
| :---: | :---: | :---: |
| Status： | Received | Sent |
| In tolerance： | X | X |
| Out of toleronce： |  |  |
| See comments： |  |  |
| Contains non－accredfed tests：，Yes $\mathrm{X}_{\mathrm{n}}$ No |  |  |
| Collbration service：＿＿．Basic X Standard |  |  |
| $\begin{array}{ll}\text { Address：} & 5511 \\ & 560 \mathrm{R}\end{array}$ | ital Cente <br> igh，NC 27 | ，Sulte |

Tested in accordance with the following procedures and standards：
Gallbration of Sound Level Meters，Scantek Inc．，Rev．5／22／2012
SLM \＆Dosimeters－- Acoustical Tests，Scantek Inc．，Rev．7／6／2011
Instrumentation used for calibration：Nor－1504 Norsonic Test System：

|  | Destrifition | $5 / 4$ | Eal Date | Tracedblility evidence | Cal．Due |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Crir Lsis／Accreditation |  |
| $A B 3 B+$ Nosphit | SNAE Cal Unt | 31052 | Oct 7.20 ta | Scantek，inc／MWLAP | Oct 7，2015 |
| DS 369 SR | Function Genterator | 33584 | Sep 30， 2013 |  | Sep 30，2015 |
|  | Dafital Wotamezer | もS3612073宔 | Oct 1,2014 | AC⿻彐丨．Env．／A2EA | Oct 7,2025 |
|  | Beteo Station | 1049170／59633 | Dct 3,2014 |  | Oct 3,2015 |
| PC Program enc atorsenic | Calibration softwaye | －V．6．17 | Validated Nov 2014 | Scantest lif． | － |
|  | Calibrator | 30978 |  | Scartek，lincr／NYLAP | 䖯 |
| 4225－8rieiskjax | Wultifunteton cajumator | 2305103 | 501 28,2014 | \＄crinek，Inc．／Nyisp | J1278， 2915 |

Instrumentation and test results are traceable to SI（Intemational System of Units）through standards maintained by NIST（USA）and NPL（UK）．

Environmental conditions：

| Temperature $(\mathrm{C})$ | Barometric pressure $(\mathrm{kpa})$ | Relative Humdity $(\%)$ |
| :---: | :---: | :---: |
| 24.2 | 100.25 | 49.1 |


| Calibrated by： | Lydon Dawkins， | Authorized signatory： |  |
| :---: | :---: | :---: | :---: |
| Signature |  | Signature | $\xrightarrow{2}$ |
| Date | $7 / 7 / 2015$ | Date | $7107 / 2015$ |

[^0]is 0 17025: 2005, ANSI/NCSL Z540:1994 Part 1 ACCREDITED by NVLAP (an ILAC MRA signatory)

# Calibration Certificate No. 34205 

| Instrument: | Sound Level Meter |
| :--- | :--- |
| Model: | NL42 |
| Manufacturer: | Rio |
| Serial number: | O1222875_017997 |
| Tested with: | Microphone UC52 s/n 144499 <br>  <br> Type (class): |
| Preamplifier NH24 s/n 22922 <br> Customer: | Mccormick Taylor |
| Tel/Fax: | $\mathbf{7 1 7 - 5 4 0 - 6 0 4 0 /}$ |



Tested in accordance with the following procedures and standards: Calibration of Sound Level Meters, Scantek Inc., Rev. 6/22/2012
SLM \& Dosimeters - Acoustical Tests, Scantek Inc., Rev. 7/6/2011
Instrumentation used for calibration: Nor-1504 Norsonic Test System:


Instrumentation and test results are traceable to SI (International System of Units) through standards
maintained by NIST (USA) and NPL (UK).
Environmental conditions:

| Temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Barometric pressure (kPa) | Relative Humidity $(\%)$ |
| :---: | :---: | :---: |
| 23.1 | 99.78 | 69.1 |



Calibration Certificates or Test Reports shall not be reproduced, except in full, without written approval of the laboratory.
This Calibration Certificate or Test Reports shall not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.
Document stored Z:\Calibration Lab\SLM 2015\RIONL42_01222875_017997_M1.doc
Page 1 of 2

## Calibration Certificate No． 34211

| Instrument： | Sound Level Meter |
| :--- | :--- |
| Model： | NL42 |
| Monufocturer： | Rion |
| Serialnumber： | 01222874＿017995 |
| Tested with： | Microphone UC52 s／n 144498 |
|  | Preamplifier NH24 s／n 22921 |
| Type（ciass）： | 2 |
| Customer： | McComick Taylor，lnc． |
| Tel／Fax： | $\mathbf{2 1 5 - 5 9 2 - 4 2 0 0 ~ e x t . 1 3 1 3 ~ / ~}$ |


| Date Calibrated：7／7／2015 CalDue： |  |  |
| :---: | :---: | :---: |
| Status： | Received | Sent |
| in toleronce： | X | X |
| Out of toleronce： |  |  |
|  |  |  |
| Contains non－accredited tests：$\quad$ Yes X Mo |  |  |
| Callbrotion service：．－．．．Basic X Standard |  |  |
| Adidress： 5511 <br>  560 R | ital Center <br> gh，NC 276 | ，Suite |

Tested in accordance with the followink procedures and standards：
Calibration of Somd Level Meters，Stantek inc．，Rev．6／22／2012
SLM \＆Dosimeters－Acoustical Tests，Scantek Incr，Rev．7／6／2011
Instrumentation used for callbrationt Nor－1504 Norsonic Test System：

| Iftrament－\＃namufacturey | Description | 5／N | Cal，Date | Traceabitity evidence | Cal，Blae |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Cal ，Lab／Accreditetion |  |
| 4838－Norsonic | SNE Cal Unit | 31052 | Ott 7，2014 | Scantek，ImC／NvLAP | Oct 7， 2015 |
| DS－360－58S | Function Generator | 33584 | Sep 30.2013 | ACR Erw／$/ 2$ LA | Sep 30,2015 |
| 34401A－Agitent Tectorotogies | Diglei Voltmeter | US3612073韦 | Oct 2,2014 | ACR En／A 2 LA | Oct 12015 |
|  | 䩗eteo Station | 1040170／59633 | Ott 3，2014 | ACR Emv／A2LA | Oct 3， 2015 |
| PC Frogram 1019 Norsonic | Callbration software | v．6．17 | $\begin{array}{c\|} \hline \text { Valicated Nov } \\ 2014 \end{array}$ | Scantek，lac． | － |
| 1251－Marsonic | Cafibrator | 30878 | Nov 10， 2014 | Scantek，Inc．／SVLAP | NOV 12，2015 |
| 4226－Brüs） | Multifanction calibrator | 2305103 | 3［128， 2014 | Scantek，Inc．／NVLAP | 扴28， 2015 |

Instrumentation and test results are traceable to $\$ 1$（international System of Units）through standards maintained by NIST（USA）and NPL（UN）．

Environmental conditions：

| Temperature $\left[{ }^{\circ} \mathrm{C}\right)$ | Barometric pressure $(\mathrm{kPa})$ | Relative Humidity（\％） |
| :---: | :---: | :---: |
| 25.0 | 100.26 | 44.5 |


| Calbrated by： | Lydon Dawkins | Authorized signatory： | Valentiabgiguga |
| :---: | :---: | :---: | :---: |
| Signature | legoral aunkeco | Signature | 12 |
| Date | $7 / 7 / 213$ | Date | $7 / 07 / 20$ |

Calbation certifictes or fest Reports shall not be reprodiced，exeept in full，whout whiten approval of the faboratory． This Callaration Cerificate or Test Reports shal not be used to claim product ceftiffathom，approval or endorsement by AVLAP，NiST， or amy agency of the fecieral govermment．


| Model | NL-42 | Product Name | Sound Level Meter, Class 2 |
| :--- | :--- | :--- | :--- |

Ensure all the items below are in the package.
If there is a missing part, please contact your supplier.

| Type | Description | Quantity | Note |
| :--- | :--- | :---: | :--- |
| NL-42 | Main unit | 1 | 06345978 |
| NL-42-025 | Storage case | 1 | $4<.52-150629$ <br> $N H \cdot 09-36126$ |
| WS-10 | Windscreen | 1 | attached to the main unit |
| NL-42-033 | Windscreen fall prevention rubber | 1 |  |
| VM-63-017 | Hand strap | 4 |  |
| LR6 | Size AA alkaline batteries | 1 |  |
|  | CD-ROM (Instruction manual, Serial interface manual, <br> Technical notes, Program option manual) | 1 |  |
|  | Description for IEC 61672-1 | 1 | only when NX-42EX is <br> pre-installed |
|  | SD memory card (512 MByte) | This sheet |  |
|  | Inspection certificate |  | only to China |
|  | Document for China RoHS |  |  |
|  |  |  |  |

## Inspection Certificate

INSPECTOR


We hereby certify that this product has been tested and calibrated at our factory according to RION specifications and that the product satisfies all relevant requirements.

PION CO., LTD. 3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533,
Japan
Sound and Vibration Measuring Instrument Section Product information and software downloads can be found on our web-site: http://svmeas.rion.co.jp/ Please check it out.

Appendix B
Noise Monitoring Data Forms



[^1]
Monitoring Notes

Notes: Time:? Car enters and leaves driveway.

$\qquad$

[^2]
*Distances in the photo above are from noise meter to nearest structure and from noise meter to edge of pavement of the closeset travel lane measured in feet.


McCormick Taylor, Inc




|  | Monitoring Notes |
| :--- | :--- |
| Notes: $\quad$ Privacy Fence (8ft) |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


*Distances in the photo above are from noise meter to nearest structure and from noise meter to edge of pavement of the closeset travel lane measured in feet.


|  | Monitoring Notes |
| :--- | :--- |
| Notes: $\quad$ Privacy Fence (8ft) |  |

$\qquad$

McCormick Taylor, Inc


*Distances in the photo above are from noise meter to nearest structure and from noise meter to edge of pavement of the closeset travel lane measured in feet.


## Monitoring Notes

Notes:


McCormick Taylor, Inc





## Appendix C <br> Noise Monitoring Data (2015)



| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$ | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.2 |
| 263 | 11/17/2015 | 9:47:26 | O0d | 00:10.0 | 52.9 | 62.9 | 53.4 | 52.4 | -- | 53.4 | 53.4 | 52.8 | 52.5 | 52.4 | ---- | ----- | 194984.5 |  |
| 264 | 11/17/2015 | 9:47:36 | 00d | 00:10.0 | 54.4 | 64.4 | 55.9 | 53.1 | -.- | 55.8 | 55.4 | 54.2 | 53.2 | 53.2 | ---- | ----- | 275422.9 |  |
| 265 | 11/17/2015 | 9:47:46 | Ood | 00:10.0 | 56.3 | 66.3 | 57 | 55.3 | -.- | 56.9 | 56.9 | 56.4 | 55.5 | 55.4 | ---- | ----- | 426579.5 |  |
| 266 | 11/17/2015 | 9:47:56 | Ood | 00:10.0 | 59.1 | 69.1 | 60.5 | 55.5 | --- | 60.5 | 60.3 | 59 | 55.6 | 55.6 | ---- | ----- | 812830.5 |  |
| 267 | 11/17/2015 | 9:48:06 | 00d | 00:10.0 | 58.2 | 68.2 | 60.2 | 57.1 | -.- | 60.2 | 60.1 | 58.2 | 57.3 | 57.2 | --- | ----- | 660693.4 |  |
| 268 | 11/17/2015 | 9:48:16 | Ood | 00:10.0 | 58.6 | 68.6 | 60 | 57.5 | -.- | 59.9 | 59.6 | 58.1 | 57.7 | 57.6 | -- | ----- | 724436.0 |  |
| 269 | 11/17/2015 | 9:48:26 | 00d | 00:10.0 | 60.4 | 70.4 | 61.4 | 58.7 | -- | 61.2 | 61.2 | 60.8 | 58.9 | 58.8 | ---- | ----- | 1096478.2 |  |
| 270 | 11/17/2015 | 9:48:36 | 00d | 00:10.0 | 62.2 | 72.2 | 64 | 58.4 | -.- | 63.9 | 63.8 | 61.8 | 59.3 | 58.6 | ---- | --- | 1659586.9 |  |
| 271 | 11/17/2015 | 9:48:46 | O0d | 00:10.0 | 54.7 | 64.7 | 60.4 | 52.3 | -.- | 59.8 | 59 | 54.3 | 52.6 | 52.5 | ---- | ----- | 295120.9 |  |
| 272 | 11/17/2015 | 9:48:56 | 00d | 00:10.0 | 54.5 | 64.5 | 55.6 | 52 | -.- | 55.6 | 55.5 | 54 | 52.3 | 52.2 | --- | ----- | 281838.3 |  |
| 273 | 11/17/2015 | 9:49:06 | 00d | 00:10.0 | 54.9 | 64.9 | 55.4 | 54.5 | -.- | 55.3 | 55.2 | 54.9 | 54.6 | 54.6 | ---- | ----- | 309029.5 |  |
| 274 | 11/17/2015 | 9:49:16 | 00d | 00:10.0 | 57 | 67 | 58.4 | 54.8 | -. | 58.4 | 58.3 | 56.5 | 54.8 | 54.8 | ---- | ----- | 501187.2 |  |
| 275 | 11/17/2015 | 9:49:26 | 00d | 00:10.0 | 55.8 | 65.8 | 57.6 | 54.6 | -- | 57.4 | 57.3 | 55.9 | 54.8 | 54.7 | ---- | --- | 380189.4 |  |
| 276 | 11/17/2015 | 9:49:36 | 00d | 00:10.0 | 53.2 | 63.2 | 55.1 | 51.4 | $\because$ | 55 | 54.9 | 53.5 | 51.6 | 51.5 | ---- | ----- | 208929.6 |  |
| 277 | 11/17/2015 | 9:49:46 | 00d | 00:10.0 | 55.7 | 65.7 | 58.4 | 51.5 | -.- | 58.2 | 57.7 | 54.9 | 51.8 | 51.5 | ---- | ----- | 371535.2 |  |
| 278 | 11/17/2015 | 9:49:56 | Ood | 00:10.0 | 57.6 | 67.6 | 59 | 56.1 | -.- | 58.8 | 58.6 | 57.6 | 56.4 | 56.3 | ---- | ---- | 575439.9 |  |



| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.2 |
| 265 | 11/17/2015 | 9:47:29 | 00d | 00:10.0 | 61.2 | 71.2 | 62.6 | 59.7 | $\because$ | 62.4 | 62.3 | 60.8 | 59.9 | 59.8 | ---- | ----- | 1318256.7 |  |
| 266 | 11/17/2015 | 9:47:39 | 00d | 00:10.0 | 64.5 | 74.5 | 65.9 | 61.7 | --- | 65.8 | 65.8 | 64.4 | 62.7 | 62.2 | ---- | ----- | 2818382.9 |  |
| 267 | 11/17/2015 | 9:47:49 | 00d | 00:10.0 | 64.6 | 74.6 | 68.2 | 61.5 | -.- | 67.8 | 67.4 | 62.5 | 61.6 | 61.6 | ---- | ----- | 2884031.5 |  |
| 268 | 11/17/2015 | 9:47:59 | 00d | 00:10.0 | 68.3 | 78.3 | 71.2 | 66.1 | -.- | 70.9 | 70.7 | 68 | 66.3 | 66.3 | ---- | ----- | 6760829.8 |  |
| 269 | 11/17/2015 | 9:48:09 | 00d | 00:10.0 | 63.6 | 73.6 | 66.2 | 61.8 | -.- | 66 | 65.8 | 63.9 | 62 | 61.9 | ---- | ----- | 2290867.7 |  |
| 270 | 11/17/2015 | 9:48:19 | 00d | 00:10.0 | 64.2 | 74.2 | 65.4 | 62.5 | $\because \cdot$ | 65.1 | 65.1 | 63.9 | 63 | 62.7 | ---- | ----- | 2630268.0 |  |
| 271 | 11/17/2015 | 9:48:29 | 00d | 00:10.0 | 60.7 | 70.7 | 63.7 | 59.7 | -- | 63.3 | 62.7 | 60.6 | 59.8 | 59.8 | -- | ----- | 1174897.6 |  |
| 272 | 11/17/2015 | 9:48:39 | 00d | 00:10.0 | 60.8 | 70.8 | 61.3 | 60.4 | --- | 61.2 | 61.1 | 60.8 | 60.6 | 60.5 | ---- | ----- | 1202264.4 |  |
| 273 | 11/17/2015 | 9:48:49 | 00d | 00:10.0 | 59.7 | 69.7 | 60.4 | 59.2 | $\because$ | 60.4 | 60.3 | 59.7 | 59.5 | 59.3 | --- | ----- | 933254.3 |  |
| 274 | 11/17/2015 | 9:48:59 | 00d | 00:10.0 | 59.7 | 69.7 | 61 | 58.6 | $\because$ | 60.9 | 60.8 | 59.1 | 58.7 | 58.6 | ---- | ----- | 933254.3 |  |
| 275 | 11/17/2015 | 9:49:09 | 00d | 00:10.0 | 57.7 | 67.7 | 60.3 | 55.2 | -- | 59.9 | 59.4 | 58.6 | 55.6 | 55.3 | - | ----- | 588843.7 |  |
| 276 | 11/17/2015 | 9:49:19 | 00d | 00:10.0 | 58.7 | 68.7 | 60.7 | 54.5 | $\because$ | 60.6 | 60.4 | 58.2 | 54.8 | 54.7 | ---- | ----- | 741310.2 |  |
| 277 | 11/17/2015 | 9:49:29 | 00d | 00:10.0 | 63.3 | 73.3 | 67.5 | 59.3 | -- | 67.3 | 66.9 | 60.1 | 59.5 | 59.4 | ---- | ----- | 2137962.1 |  |
| 278 | 11/17/2015 | 9:49:39 | 00d | 00:10.0 | 63.4 | 73.4 | 67 | 62.5 | $\because \cdot$ | 66 | 64.8 | 63.8 | 62.6 | 62.6 | ---- | ----- | 2187761.6 |  |
| 279 | 11/17/2015 | 9:49:49 | 00d | 00:10.0 | 59.6 | 69.6 | 62.6 | 58.7 | -- | 62.2 | 61.4 | 59.7 | 58.8 | 58.8 | ---- | ----- | 912010 |  |
| 280 | 11/17/2015 | 9:49:59 | 00d | 00:10.0 | 60.1 | 70.1 | 60.4 | 59.7 | -- | 60.3 | 60.3 | 60.2 | 59.9 | 59.8 | ---- | ---- | 1023293.0 |  |



| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$ | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 |
| 263 | 11/17/2015 | 9:47:29 | 00d | 00:10.0 | 56.8 | 66.8 | 58.1 | 55.6 | -.- | 57.9 | 57.7 | 56.7 | 55.8 | 55.8 | ---- | ----- | 478630.1 |  |
| 264 | 11/17/2015 | 9:47:39 | 00d | 00:10.0 | 58.3 | 68.3 | 60.1 | 55.2 | -.- | 60 | 59.8 | 58.4 | 56.4 | 55.7 | ---- | ----- | 676083.0 |  |
| 265 | 11/17/2015 | 9:47:49 | 00d | 00:10.0 | 53.5 | 63.5 | 55.2 | 52.9 | -.- | 54.8 | 54.7 | 53.4 | 53 | 53 | ---- | ----- | 223872.1 |  |
| 266 | 11/17/2015 | 9:47:59 | 00d | 00:10.0 | 57 | 67 | 58.3 | 54 | $\because \cdot$ | 58.2 | 58 | 56.7 | 55.2 | 55 | ---- | ---- | 501187.2 |  |
| 267 | 11/17/2015 | 9:48:09 | Ood | 00:10.0 | 58.1 | 68.1 | 60 | 56 | -.- | 59.9 | 59.8 | 57.9 | 56.2 | 56.2 | --- | ---- | 645654.2 |  |
| 268 | 11/17/2015 | 9:48:19 | 00d | 00:10.0 | 58.3 | 68.3 | 59.7 | 56.7 | -.- | 59.6 | 59.5 | 57.9 | 57 | 56.9 | ---- | ----- | 676083.0 |  |
| 269 | 11/17/2015 | 9:48:29 | 00d | 00:10.0 | 58.5 | 68.5 | 59.5 | 57.4 | $\because \cdot$ | 59.4 | 59.2 | 58.6 | 57.7 | 57.4 | ---- | ----- | 707945.8 |  |
| 270 | 11/17/2015 | 9:48:39 | 00d | 00:10.0 | 59.4 | 69.4 | 61.7 | 57.4 | --- | 61.6 | 61.3 | 59.2 | 57.7 | 57.5 | ---- | ---- | 870963.6 |  |
| 271 | 11/17/2015 | 9:48:49 | 00d | 00:10.0 | 59.9 | 69.9 | 61.1 | 57.7 | -- | 61 | 60.9 | 60.1 | 57.8 | 57.8 | ---- | ---- | 977237.2 |  |
| 272 | 11/17/2015 | 9:48:59 | 00d | 00:10.0 | 58.8 | 68.8 | 61.3 | 55.8 | -- | 61.2 | 60.9 | 58.1 | 56.1 | 56 | ---- | ----- | 758577.6 |  |
| 273 | 11/17/2015 | 9:49:09 | 00d | 00:10.0 | 58.6 | 68.6 | 60.7 | 57.3 | $\because$ | 60.6 | 60.6 | 58.4 | 57.6 | 57.5 | - | ----- | 724436.0 |  |
| 274 | 11/17/2015 | 9:49:19 | 00d | 00:10.0 | 60 | 70 | 62.1 | 58.2 | $\because$ | 61.9 | 61.4 | 59.8 | 58.5 | 58.4 | ---- | ---- | 1000000.0 |  |
| 275 | 11/17/2015 | 9:49:29 | 00d | 00:10.0 | 55.2 | 65.2 | 58.3 | 53.1 | -- | 58.1 | 57.7 | 54.5 | 53.2 | 53.1 | ---- | ----- | 331131.1 |  |
| 276 | 11/17/2015 | 9:49:39 | OOd | 00:10.0 | 58.5 | 68.5 | 60.2 | 54 | $\because \cdot$ | 60.1 | 59.8 | 58.6 | 54.2 | 54.1 | ---- | ----- | 707945.8 |  |
| 277 | 11/17/2015 | 9:49:49 | OOd | 00:10.0 | 57.3 | 67.3 | 59.6 | 56.3 | $\because \cdot$ | 59.3 | 58.9 | 57.2 | 56.4 | 56.4 | ---- | --- | 537031.8 |  |
| 278 | 11/17/2015 | 9:49:59 | 00d | 00:10.0 | 56.7 | 66.7 | 58.4 | 54.5 | -.- | 58.3 | 58.1 | 57.1 | 54.7 | 54.6 | ---- | ----- | 467735.1 |  |



| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.7 |
| 265 | 11/17/2015 | 9:47:40 | Ood | 00:10.0 | 55.4 | 65.4 | 56.5 | 53.3 | -- | 56.7 | 56.7 | 55.6 | 54.4 | 54.2 | ---- | ----- | 346736.9 |  |
| 266 | 11/17/2015 | 9:47:50 | OOd | 00:10.0 | 57.5 | 67.5 | 59.6 | 54.4 | $\because$ | 60.3 | 60.3 | 57.5 | 55.7 | 54.3 | --- | ----- | 562341.3 |  |
| 267 | 11/17/2015 | 9:48:00 | 00d | 00:10.0 | 55.6 | 65.6 | 57.3 | 54.5 | -- | 57.4 | 57.4 | 55.1 | 54.5 | 54.5 | ---- | ----- | 363078.1 |  |
| 268 | 11/17/2015 | 9:48:10 | 00d | 00:10.0 | 53.8 | 63.8 | 55.1 | 52.9 | -. | 55.1 | 55.1 | 53.8 | 53.1 | 52.6 | ---- | ----- | 239883.3 |  |
| 269 | 11/17/2015 | 9:48:20 | 00d | 00:10.0 | 53.2 | 63.2 | 54.3 | 52.3 | $\because$ | 54.8 | 54.8 | 53.2 | 52.5 | 52.3 | ---- | ----- | 208929.6 |  |
| 270 | 11/17/2015 | 9:48:30 | Ood | 00:10.0 | 58.6 | 68.6 | 59.2 | 54.3 | -- | 59.2 | 59.2 | 58.7 | 58.3 | 57 | ---- | ----- | 724436.0 |  |
| 271 | 11/17/2015 | 9:48:40 | 00d | 00:10.0 | 61.6 | 71.6 | 64.9 | 58.4 | -- | 65.2 | 65.2 | 60.6 | 58.5 | 58.5 | ---- | ----- | 1445439.8 |  |
| 272 | 11/17/2015 | 9:48:50 | 00d | 00:10.0 | 63.7 | 73.7 | 64.8 | 62.6 | -- | 64.3 | 64.3 | 63.8 | 62.6 | 62.4 | ---- | ----- | 2344228.8 |  |
| 273 | 11/17/2015 | 9:49:00 | 00d | 00:10.0 | 63.8 | 73.8 | 67.3 | 59.9 | -- | 67.9 | 67.9 | 63.2 | 59.8 | 59.8 | ---- | ----- | 2398832.9 |  |
| 274 | 11/17/2015 | 9:49:10 | 00d | 00:10.0 | 59.5 | 69.5 | 61.7 | 57.4 | -- | 62 | 62 | 59.1 | 57.5 | 57.4 | ---- | ----- | 891250.9 |  |
| 275 | 11/17/2015 | 9:49:20 | OOd | 00:10.0 | 63.3 | 73.3 | 64.7 | 61.7 | -- | 64.8 | 64.8 | 63.1 | 61.9 | 61.5 | ---- | ----- | 2137962.1 |  |
| 276 | 11/17/2015 | 9:49:30 | Ood | 00:10.0 | 62.2 | 72.2 | 63.7 | 60.2 | -- | 63.8 | 63.8 | 62.7 | 60.3 | 59.5 | ---- | ----- | 1659586.9 |  |
| 277 | 11/17/2015 | 9:49:40 | 00d | 00:10.0 | 61.3 | 71.3 | 62.8 | 59 | -- | 63 | 63 | 61.3 | 59.4 | 58.5 | ---- | ---- | 1348962.9 |  |
| 278 | 11/17/2015 | 9:49:50 | 00d | 00:10.0 | 57.5 | 67.5 | 59.1 | 56.3 | -- | 59 | 59 | 57.5 | 56.1 | 55.9 | ---- | ----- | 562341.3 |  |


| Address | Start Time | Measure | emen | Time | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 |
| 131 | 11/17/2015 | 10:40:06 | 00d | 00:10.0 | 59.9 | 69.9 | 61.4 | 57.7 | -- | 61.3 | 61.3 | 60.7 | 57.9 | 57.9 | --- | ---- | 977237.2 |  |
| 132 | 11/17/2015 | 10:40:16 | Ood | 00:10.0 | 55.5 | 65.5 | 59.5 | 53.5 | -- | 59.1 | 58.8 | 55.4 | 53.7 | 53.6 | ---- | --- | 354813.4 |  |
| 133 | 11/17/2015 | 10:40:26 | Ood | 00:10.0 | 53.1 | 63.1 | 55.8 | 50.9 | -- | 55.3 | 54.4 | 52.7 | 51 | 51 | --- | ---- | 204173.8 |  |
| 134 | 11/17/2015 | 10:40:36 | Ood | 00:10.0 | 55.5 | 65.5 | 56.6 | 54.4 | -- | 56.5 | 56.5 | 55.5 | 54.5 | 54.4 | --- | ---- | 354813.4 |  |
| 135 | 11/17/2015 | 10:40:46 | 00d | 00:10.0 | 54.7 | 64.7 | 56.6 | 52.4 | -- | 56.5 | 56.4 | 54.4 | 52.5 | 52.5 | ---- | ---- | 295120.9 |  |
| 136 | 11/17/2015 | 10:40:56 | 00d | 00:10.0 | 53.3 | 63.3 | 55.7 | 51.9 | -- | 55.2 | 54.8 | 53.6 | 52.1 | 52 | --- | ---- | 213796.2 |  |
| 137 | 11/17/2015 | 10:41:06 | 00d | 00:10.0 | 58.4 | 68.4 | 61 | 52 | --- | 60.9 | 60.8 | 56.2 | 52.5 | 52.3 | ---- | --- | 691831.0 |  |
| 138 | 11/17/2015 | 10:41:16 | 00d | 00:10.0 | 62.5 | 72.5 | 64.5 | 60 | -- | 64.1 | 63.8 | 61.7 | 60.1 | 60.1 | --- | ---- | 1778279.4 |  |
| 139 | 11/17/2015 | 10:41:26 | 00d | 00:10.0 | 62 | 72 | 65.6 | 60.2 | -- | 65.5 | 65.3 | 61.2 | 60.3 | 60.3 | --- | ---- | 1584893.2 |  |
| 140 | 11/17/2015 | 10:41:36 | 00d | 00:10.0 | 62.4 | 72.4 | 64.9 | 60 | -- | 64.8 | 64.5 | 61.4 | 60.1 | 60.1 | --- | --- | 1737800.8 |  |
| 141 | 11/17/2015 | 10:41:46 | Ood | 00:10.0 | 60.5 | 70.5 | 62.1 | 58.9 | -- | 61.6 | 61.2 | 60.6 | 59.1 | 59 | --- | ---- | 1122018.5 |  |
| 142 | 11/17/2015 | 10:41:56 | 00d | 00:10.0 | 60.3 | 70.3 | 62.5 | 58.3 | -- | 62.5 | 62.4 | 59.9 | 58.5 | 58.4 | --- | ---- | 1071519.3 |  |
| 143 | 11/17/2015 | 10:42:06 | 00d | 00:10.0 | 61.4 | 71.4 | 63.8 | 58.8 | -- | 63.4 | 62.6 | 60.7 | 58.9 | 58.9 | ---- | ---- | 1380384.3 |  |
| 144 | 11/17/2015 | 10:42:16 | 00d | 00:10.0 | 59.4 | 69.4 | 63.7 | 52.5 | -- | 63.1 | 62.4 | 60.7 | 55 | 53.7 | ---- | --- | 870963.6 |  |
| 145 | 11/17/2015 | 10:42:26 | Ood | 00:10.0 | 49.8 | 59.8 | 52.5 | 47.5 | --- | 51.7 | 51.6 | 49.6 | 47.6 | 47.6 | ---- | ---- | 95499.3 |  |
| 146 | 11/17/2015 | 10:42:36 | 00d | 00:10.0 | 54.3 | 64.3 | 56.4 | 51.7 | -- | 56.3 | 56.1 | 53.7 | 52.1 | 51.9 | --- | ---- | 269153.5 |  |
| 147 | 11/17/2015 | 10:42:46 | 00d | 00:10.0 | 54.6 | 64.6 | 56.6 | 51.8 | -- | 56.6 | 56.4 | 54.5 | 52.9 | 52.4 | --- | ---- | 288403.2 |  |
| 148 | 11/17/2015 | 10:42:56 | Ood | 00:10.0 | 47.9 | 57.9 | 51.8 | 46.8 | -- | 51.2 | 50.6 | 47.7 | 46.8 | 46.8 | --- | ---- | 61659.5 |  |
| 149 | 11/17/2015 | 10:43:06 | 00d | 00:10.0 | 55.2 | 65.2 | 58.4 | 47.1 | -- | 58.3 | 58.2 | 51.2 | 47.4 | 47.2 | --- | ---- | 331131.1 |  |
| 150 | 11/17/2015 | 10:43:16 | 00d | 00:10.0 | 60.2 | 70.2 | 61.6 | 58.3 | -- | 61.5 | 61.3 | 59.5 | 58.8 | 58.6 | ---- | ---- | 1047128.5 |  |
| 151 | 11/17/2015 | 10:43:26 | 00d | 00:10.0 | 61.4 | 71.4 | 63.5 | 59.7 | -- | 63.4 | 63.2 | 61.3 | 60.1 | 60 | --- | --- | 1380384.3 |  |
| 152 | 11/17/2015 | 10:43:36 | Ood | 00:10.0 | 59.2 | 69.2 | 61.9 | 57.3 | -- | 60.8 | 59.6 | 58.7 | 57.5 | 57.3 | --- | ---- | 831763.8 |  |
| 153 | 11/17/2015 | 10:43:46 | 00d | 00:10.0 | 60.1 | 70.1 | 63.3 | 57.1 | -- | 63.3 | 63.1 | 59.5 | 57.2 | 57.2 | ---- | ---- | 1023293.0 |  |
| 154 | 11/17/2015 | 10:43:56 | 00d | 00:10.0 | 59.1 | 69.1 | 61.2 | 55.4 | -- | 61.1 | 61 | 59 | 56 | 55.6 | ---- | ---- | 812830.5 |  |
| 155 | 11/17/2015 | 10:44:06 | Ood | 00:10.0 | 56.1 | 66.1 | 56.8 | 55.2 | -- | 56.5 | 56.5 | 56 | 55.3 | 55.3 | --- | $\cdots$ | 407380.3 |  |
| 156 | 11/17/2015 | 10:44:16 | 00d | 00:10.0 | 57.1 | 67.1 | 59.3 | 55.9 | -- | 59.2 | 58.9 | 56.6 | 56 | 56 | ---- | ---- | 512861.4 |  |
| 157 | 11/17/2015 | 10:44:26 | 00d | 00:10.0 | 51.4 | 61.4 | 55.9 | 49.6 | -- | 55.5 | 54.9 | 51.1 | 49.7 | 49.6 | --- | ---- | 138038.4 |  |
| 158 | 11/17/2015 | 10:44:36 | 00d | 00:10.0 | 50.8 | 60.8 | 53.1 | 48.4 | -- | 52.4 | 51.7 | 50.4 | 48.5 | 48.5 | --- | $\cdots$ | 120226.4 |  |
| 159 | 11/17/2015 | 10:44:46 | 00d | 00:10.0 | 54.2 | 64.2 | 56.1 | 51.3 | -- | 56 | 55.9 | 54.5 | 51.5 | 51.4 | --- | ---- | 263026.8 |  |
| 160 | 11/17/2015 | 10:44:56 | 00d | 00:10.0 | 60.1 | 70.1 | 66.8 | 51.6 | -- | 63.8 | 60.5 | 55.3 | 53.7 | 52.5 | --- | ---- | 1023293.0 |  |
| 161 | 11/17/2015 | 10:45:06 | 00d | 00:10.0 | 59.4 | 69.4 | 67.5 | 53.7 | -- | 67.2 | 66.4 | 56.9 | 54 | 53.8 | ---- | ---- | 870963.6 |  |
| 162 | 11/17/2015 | 10:45:16 | 00d | 00:10.0 | 61.2 | 71.2 | 62.1 | 59.3 | -- | 62.1 | 62 | 61.3 | 59.6 | 59.5 | --- | ---- | 1318256.7 |  |
| 163 | 11/17/2015 | 10:45:26 | 00d | 00:10.0 | 61.4 | 71.4 | 62.4 | 60 | -- | 62.3 | 62.2 | 61.5 | 60.7 | 60.4 | --- | ---- | 1380384.3 |  |
| 164 | 11/17/2015 | 10:45:36 | Ood | 00:10.0 | 55.8 | 65.8 | 60 | 54.5 | -- | 59.5 | 59 | 55.4 | 54.6 | 54.6 | --- | ---- | 380189.4 |  |
| 165 | 11/17/2015 | 10:45:46 | 00d | 00:10.0 | 56 | 66 | 56.7 | 55 | --- | 56.7 | 56.5 | 55.9 | 55.1 | 55.1 | --- | ---- | 398107.2 |  |
| 166 | 11/17/2015 | 10:45:56 | Ood | 00:10.0 | 62.2 | 72.2 | 64.7 | 56.7 | -- | 64.7 | 64.5 | 61.2 | 57 | 56.8 | --- | ---- | 1659586.9 |  |
| 167 | 11/17/2015 | 10:46:06 | Ood | 00:10.0 | 61.3 | 71.3 | 62.9 | 59.7 | -- | 62.3 | 62.1 | 61.6 | 60.9 | 60.4 | --- | ---- | 1348962.9 |  |
| 168 | 11/17/2015 | 10:46:16 | 00d | 00:10.0 | 57.8 | 67.8 | 59.7 | 55.5 | -- | 59.5 | 59.4 | 57.9 | 55.8 | 55.6 | --- | --- | 602559.6 |  |
| 169 | 11/17/2015 | 10:46:26 | Ood | 00:10.0 | 56.3 | 66.3 | 58.9 | 54.7 | -- | 58.8 | 58.4 | 56.4 | 54.9 | 54.8 | --- | $\cdots$ | 426579.5 |  |
| 170 | 11/17/2015 | 10:46:36 | 00d | 00:10.0 | 53.5 | 63.5 | 55.7 | 53 | --- | 55.3 | 54.9 | 53.4 | 53 | 53 | --- | --- | 223872.1 |  |
| 171 | 11/17/2015 | 10:46:46 | Ood | 00:10.0 | 54.2 | 64.2 | 55.4 | 52.9 | -- | 55.3 | 55.1 | 54.2 | 53.1 | 53.1 | --- | --- | 263026.8 |  |
| 172 | 11/17/2015 | 10:46:56 | 00d | 00:10.0 | 53.8 | 63.8 | 57.6 | 50.9 | -- | 56.8 | 55.8 | 52.4 | 50.9 | 50.9 | --- | --- | 239883.3 |  |
| 173 | 11/17/2015 | 10:47:06 | 00d | 00:10.0 | 64.6 | 74.6 | 68.7 | 57.6 | -- | 67.7 | 66.8 | 61.3 | 58.5 | 58.5 | --- | ---- | 2884031.5 |  |
| 174 | 11/17/2015 | 10:47:16 | 00d | 00:10.0 | 64.4 | 74.4 | 70.4 | 60.7 | -- | 69.8 | 69.5 | 63.3 | 60.7 | 60.7 | --- | ---- | 2754228.7 |  |
| 175 | 11/17/2015 | 10:47:26 | 00d | 00:10.0 | 61.4 | 71.4 | 62.4 | 60 | -- | 62.3 | 62.2 | 61.5 | 60.7 | 60.6 | --- | --- | 1380384.3 |  |
| 176 | 11/17/2015 | 10:47:36 | Ood | 00:10.0 | 59.6 | 69.6 | 60.9 | 58.3 | -- | 60.7 | 60.6 | 59.3 | 58.4 | 58.4 | --- | $\cdots$ | 912010.8 |  |
| 177 | 11/17/2015 | 10:47:46 | 00d | 00:10.0 | 62.8 | 72.8 | 65.1 | 60.6 | -- | 65 | 64.8 | 62.3 | 60.8 | 60.7 | --- | ---- | 1905460.7 |  |
| 178 | 11/17/2015 | 10:47:56 | Ood | 00:10.0 | 60.9 | 70.9 | 61.6 | 60.2 | -- | 61.5 | 61.4 | 60.9 | 60.4 | 60.2 | --- | $\cdots$ | 1230268.8 |  |
| 179 | 11/17/2015 | 10:48:06 | Ood | 00:10.0 | 62.7 | 72.7 | 65.3 | 60.5 | -- | 65.1 | 64.4 | 62.2 | 61.4 | 61 | -- | $\cdots$ | 1862087.1 |  |
| 180 | 11/17/2015 | 10:48:16 | 00d | 00:10.0 | 60.6 | 70.6 | 61.5 | 59.7 | -- | 61.4 | 61.3 | 60.7 | 59.8 | 59.8 | --- | --- | 1148153.6 |  |
| 181 | 11/17/2015 | 10:48:26 | 00d | 00:10.0 | 54.1 | 64.1 | 60.2 | 51.4 | -- | 59.5 | 58.5 | 54.5 | 51.5 | 51.4 | --- | ---- | 257039.6 |  |
| 182 | 11/17/2015 | 10:48:36 | 00d | 00:10.0 | 53.5 | 63.5 | 57 | 49.8 | -- | 56.9 | 56.6 | 52.4 | 50.4 | 50.2 | --- | --- | 223872.1 |  |
| 183 | 11/17/2015 | 10:48:46 | Ood | 00:10.0 | 47.5 | 57.5 | 49.8 | 46.5 | -- | 49.4 | 49 | 47.4 | 46.7 | 46.6 | --- | ---- | 56234.1 |  |
| 184 | 11/17/2015 | 10:48:56 | 00d | 00:10.0 | 52.1 | 62.1 | 54.7 | 48.6 | -- | 54.3 | 53.4 | 51.2 | 49.9 | 49.8 | --- | ---- | 162181.0 |  |
| 185 | 11/17/2015 | 10:49:06 | Ood | 00:10.0 | 54.5 | 64.5 | 56.9 | 52 | --- | 56.8 | 56.5 | 54 | 52.3 | 52.2 | --- | $\cdots$ | 281838.3 |  |
| 186 | 11/17/2015 | 10:49:16 | 00d | 00:10.0 | 65.6 | 75.6 | 69.9 | 56.6 | -- | 69.8 | 69.4 | 61.1 | 56.7 | 56.6 | --- | ---- | 3630780.5 |  |
| 187 | 11/17/2015 | 10:49:26 | 00d | 00:10.0 | 63.6 | 73.6 | 69.4 | 61.5 | -- | 68.5 | 67.7 | 63.9 | 62.1 | 62 | --- | ---- | 2290867.7 |  |
| 188 | 11/17/2015 | 10:49:36 | 00d | 00:10.0 | 58.3 | 68.3 | 61.5 | 56.5 | --- | 60.9 | 60.4 | 58 | 56.9 | 56.7 | --- | ---- | 676083.0 |  |
| 189 | 11/17/2015 | 10:49:46 | 00d | 00:10.0 | 60.4 | 70.4 | 61.3 | 59.1 | -- | 61.2 | 61.2 | 60.6 | 59.3 | 59.2 | --- | --- | 1096478.2 |  |
| 190 | 11/17/2015 | 10:49:56 | Ood | 00:10.0 | 60.7 | 70.7 | 62.7 | 57.8 | --- | 62.5 | 62.2 | 60.3 | 58.2 | 58 | --- | ---- | 1174897.6 |  |
| 191 | 11/17/2015 | 10:50:06 | 00d | 00:10.0 | 62.1 | 72.1 | 65.5 | 59 | -- | 65.2 | 64.7 | 61.2 | 59.3 | 59.1 | --- | ---- | 1621810.1 |  |
| 192 | 11/17/2015 | 10:50:16 | 00d | 00:10.0 | 60.5 | 70.5 | 63.5 | 57.6 | --- | 63.3 | 62.9 | 59.8 | 58.8 | 58.6 | --- | --- | 1122018.5 |  |
| 193 | 11/17/2015 | 10:50:26 | 00d | 00:10.0 | 50.8 | 60.8 | 57.6 | 48.4 | -- | 56.8 | 56 | 50.1 | 48.6 | 48.5 | --- | ---- | 120226.4 |  |
| 194 | 11/17/2015 | 10:50:36 | 00d | 00:10.0 | 53.1 | 63.1 | 55.2 | 49.2 | -- | 55 | 54.5 | 52.2 | 50.5 | 49.9 | --- | ---- | 204173.8 |  |
| 195 | 11/17/2015 | 10:50:46 | Ood | 00:10.0 | 57.9 | 67.9 | 59.4 | 54.9 | -- | 59.2 | 59.1 | 57.6 | 55.6 | 54.9 | --- | ---- | 616595.0 |  |
| 196 | 11/17/2015 | 10:50:56 | 00d | 00:10.0 | 62 | 72 | 65.2 | 58 | -- | 65 | 64.9 | 59.5 | 58.2 | 58.1 | --- | $\cdots$ | 1584893.2 |  |
| 197 | 11/17/2015 | 10:51:06 | 00d | 00:10.0 | 61.3 | 71.3 | 63.1 | 59 | -- | 62.9 | 62.9 | 61.2 | 59.3 | 59.2 | --- | --- | 1348962.9 |  |
| 198 | 11/17/2015 | 10:51:16 | 00d | 00:10.0 | 64 | 74 | 66.7 | 61.9 | -- | 66.6 | 66.3 | 63.3 | 62.1 | 62 | --- | --- | 2511886.4 |  |
| 199 | 11/17/2015 | 10:51:26 | 00d | 00:10.0 | 60.8 | 70.8 | 63 | 58.5 | -- | 62.4 | 62.3 | 60.8 | 58.8 | 58.7 | --- | ---- | 1202264.4 |  |
| 200 | 11/17/2015 | 10:51:36 | 00d | 00:10.0 | 62.5 | 72.5 | 64.6 | 60.7 | -- | 64.5 | 64.3 | 61.7 | 60.9 | 60.8 | --- | --- | 1778279.4 |  |
| 201 | 11/17/2015 | 10:51:46 | 00d | 00:10.0 | 57.2 | 67.2 | 63.6 | 54.6 | -- | 63 | 62.3 | 56.6 | 55 | 54.9 | --- | ---- | 524807.5 |  |
| 202 | 11/17/2015 | 10:51:56 | Ood | 00:10.0 | 54.1 | 64.1 | 56 | 52.4 | -- | 55.1 | 54.7 | 54.4 | 53.4 | 52.7 | --- | ---- | 257039.6 |  |
| 203 | 11/17/2015 | 10:52:06 | 00d | 00:10.0 | 56.9 | 66.9 | 61.4 | 51.9 | -- | 60.9 | 59.9 | 53.4 | 52.1 | 52 | --- | --- | 489778.8 |  |
| 204 | 11/17/2015 | 10:52:16 | 00d | 00:10.0 | 56.8 | 66.8 | 61.5 | 52.8 | -- | 61.3 | 60.7 | 55.4 | 53.4 | 52.9 | --- | ---- | 478630.1 |  |


| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$ | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 |
| 205 | 11/17/2015 | 10:52:26 | 00d | 00:10.0 | 57.3 | 67.3 | 59.9 | 54.4 | -- | 59.6 | 59.3 | 56.8 | 54.6 | 54.5 | ---- | ---- | 537031.8 |  |
| 206 | 11/17/2015 | 10:52:36 | 00d | 00:10.0 | 56.5 | 66.5 | 58.8 | 53.6 | -. | 58.4 | 58.2 | 56.4 | 54.3 | 54.1 | ---- | ----- | 446683.6 |  |
| 207 | 11/17/2015 | 10:52:46 | 00d | 00:10.0 | 56.4 | 66.4 | 58.9 | 53.9 | -- | 58.7 | 58.3 | 55.8 | 54.4 | 54.3 | ---- | ----- | 436515.8 |  |
| 208 | 11/17/2015 | 10:52:56 | 00d | 00:10.0 | 59 | 69 | 61.4 | 56.1 | -- | 61.3 | 60.9 | 58.3 | 57.2 | 56.3 | ---- | ---- | 794328.2 |  |
| 209 | 11/17/2015 | 10:53:06 | 00d | 00:10.0 | 64.9 | 74.9 | 70 | 57.3 | -- | 69.6 | 69.2 | 58.1 | 57.4 | 57.4 | ---- | ---- | 3090295.4 |  |
| 210 | 11/17/2015 | 10:53:16 | 00d | 00:10.0 | 58.1 | 68.1 | 67.8 | 55.8 | -.- | 66.6 | 65.1 | 57.8 | 56 | 55.9 | ---- | ----- | 645654.2 |  |
| 211 | 11/17/2015 | 10:53:26 | 00d | 00:10.0 | 56.2 | 66.2 | 56.9 | 55.6 | -. | 56.9 | 56.9 | 56.4 | 55.6 | 55.6 | ---- | ----- | 416869.4 |  |
| 212 | 11/17/2015 | 10:53:36 | 00d | 00:10.0 | 57.3 | 67.3 | 59.1 | 55.6 | -. | 58.4 | 57.8 | 56.9 | 55.7 | 55.6 | ---- | ---- | 537031.8 |  |
| 213 | 11/17/2015 | 10:53:46 | 00d | 00:10.0 | 60.2 | 70.2 | 61.2 | 58.3 | -.- | 61.1 | 61.1 | 60.3 | 58.9 | 58.5 | ---- | ----- | 1047128.5 |  |
| 214 | 11/17/2015 | 10:53:56 | 00d | 00:10.0 | 57.1 | 67.1 | 58.3 | 56.1 | -- | 58.1 | 58.1 | 57.2 | 56.2 | 56.2 | ---- | ----- | 512861.4 |  |
| 215 | 11/17/2015 | 10:54:06 | 00d | 00:10.0 | 59.9 | 69.9 | 60.8 | 56.6 | $\because$ | 60.7 | 60.7 | 59.9 | 57.6 | 57.1 | ---- | ----- | 977237.2 |  |
| 216 | 11/17/2015 | 10:54:16 | 00d | 00:10.0 | 60.1 | 70.1 | 60.7 | 59.1 | -- | 60.6 | 60.5 | 60 | 59.3 | 59.2 | ---- | ---- | 1023293.0 |  |
| 217 | 11/17/2015 | 10:54:26 | 00d | 00:10.0 | 57.1 | 67.1 | 60.3 | 56 | -.- | 59.9 | 59.4 | 57 | 56.2 | 56.2 | ---- | ----- | 512861.4 |  |
| 218 | 11/17/2015 | 10:54:36 | 00d | 00:10.0 | 56.3 | 66.3 | 57.8 | 54.2 | -.- | 57.8 | 57.7 | 56.1 | 55.1 | 54.5 | ---- | ----- | 426579.5 |  |
| 219 | 11/17/2015 | 10:54:46 | 00d | 00:10.0 | 53 | 63 | 54.5 | 51.4 | -- | 54.3 | 54.2 | 53 | 51.5 | 51.5 | ---- | ----- | 199526.2 |  |
| 220 | 11/17/2015 | 10:54:56 | 00d | 00:10.0 | 54 | 64 | 56.5 | 50.6 | -.- | 56.4 | 56.4 | 51.9 | 50.7 | 50.7 | ---- | ----- | 251188.6 |  |


| Address | Start <br> Time | Measure | emen | Time | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 |
| 49 | 11/17/2015 | 10:40:01 | ood | 00:10.0 | 63.6 | 73.6 | 68.1 | 56.2 | --- | 68.9 | 68.9 | 61.6 | 58 | 57.8 | ---- | ----- | 2290867.7 |  |
| 50 | 11/17/2015 | 10:40:11 | ood | 00:10.0 | 60.2 | 70.2 | 62.8 | 56.8 | -- | 63.1 | 63.1 | 59.8 | 57 | 55.8 | ---- | ----- | 1047128.5 |  |
| 51 | 11/17/2015 | 10:40:21 | 00d | 00:10.0 | 61.2 | 71.2 | 62.5 | 58.8 | $\cdots$ | 62.9 | 62.9 | 62 | 59.4 | 58 | ---- | ----- | 1318256.7 |  |
| 52 | 11/17/2015 | 10:40:31 | 00d | 00:10.0 | 63 | 73 | 65.1 | 60.7 | -- | 65.5 | 65.5 | 62.9 | 60.7 | 60.5 | ---- | ----- | 1995262.3 |  |
| 53 | 11/17/2015 | 10:40:41 | 00d | 00:10.0 | 63 | 73 | 65.1 | 60.4 | $\cdots$ | 64.8 | 64.8 | 63.3 | 60.4 | 60.2 | ---- | ---- | 1995262.3 |  |
| 54 | 11/17/2015 | 10:40:51 | Ood | 00:10.0 | 58.6 | 68.6 | 60.4 | 57.6 | $\cdots$ | 60.1 | 60.1 | 58.5 | 57.7 | 57.7 | ---- | ----- | 724436.0 |  |
| 55 | 11/17/2015 | 10:41:01 | Ood | 00:10.0 | 58.3 | 68.3 | 58.9 | 57.7 | -- | 58.9 | 58.9 | 58.3 | 57.8 | 57.7 | ---- | ----- | 676083.0 |  |
| 56 | 11/17/2015 | 10:41:11 | 00d | 00:10.0 | 61 | 71 | 63.1 | 58.5 | -- | 63.4 | 63.4 | 61 | 58.6 | 58.4 | ---- | ----- | 1258925.4 |  |
| 57 | 11/17/2015 | 10:41:21 | Ood | 00:10.0 | 60.3 | 70.3 | 62.8 | 57.4 | --- | 62.3 | 62.3 | 60.3 | 57.5 | 57.1 | ---- | ----- | 1071519.3 |  |
| 58 | 11/17/2015 | 10:41:31 | Ood | 00:10.0 | 55.5 | 65.5 | 57.5 | 54.2 | -.- | 57.5 | 57.5 | 55.3 | 54.1 | 54 | - | ----- | 354813.4 |  |
| 59 | 11/17/2015 | 10:41:41 | 00d | 00:10.0 | 61 | 71 | 62.7 | 57 | -- | 63.1 | 63.1 | 61.3 | 59.4 | 59.2 | ---- | ----- | 1258925.4 |  |
| 60 | 11/17/2015 | 10:41:51 | 00d | 00:10.0 | 56.5 | 66.5 | 62.6 | 53.6 | --- | 59.9 | 59.9 | 56 | 53.8 | 53.3 | ---- | ----- | 446683.6 |  |
| 61 | 11/17/2015 | 10:42:01 | Ood | 00:10.0 | 56.4 | 66.4 | 58.6 | 53.9 | -- | 59.4 | 59.4 | 56.2 | 53.6 | 53.3 | - | ----- | 436515.8 |  |
| 62 | 11/17/2015 | 10:42:11 | Ood | 00:10.0 | 58.4 | 68.4 | 60.9 | 55.6 | -.- | 61.3 | 61.3 | 59.1 | 55.5 | 55.4 | ---- | ----- | 691831.0 |  |
| 63 | 11/17/2015 | 10:42:21 | 00d | 00:10.0 | 56.7 | 66.7 | 59.2 | 54.4 | $\because$ | 59.5 | 59.5 | 56.3 | 54.2 | 54.2 | ---- | ----- | 467735.1 |  |
| 64 | 11/17/2015 | 10:42:31 | 00d | 00:10.0 | 57.8 | 67.8 | 60.2 | 56.1 | -- | 60.3 | 60.3 | 57.1 | 56.2 | 56 | ---- | ----- | 602559.6 |  |
| 65 | 11/17/2015 | 10:42:41 | Ood | 00:10.0 | 60.1 | 70.1 | 60.9 | 57.8 | -- | 61 | 61 | 60.1 | 59.1 | 59 | ---- | ----- | 1023293.0 |  |
| 66 | 11/17/2015 | 10:42:51 | 00d | 00:10.0 | 58.9 | 68.9 | 61.4 | 56.1 | $\cdots$ | 61.6 | 61.6 | 59 | 56.1 | 55.6 | ---- | ---- | 776247.1 |  |
| 67 | 11/17/2015 | 10:43:01 | Ood | 00:10.0 | 58.5 | 68.5 | 59.4 | 56.2 | --- | 59.6 | 59.6 | 58.9 | 56.9 | 56.8 | ---- | ----- | 707945.8 |  |
| 68 | 11/17/2015 | 10:43:11 | Ood | 00:10.0 | 56.7 | 66.7 | 57.3 | 56.2 | -- | 57.3 | 57.3 | 56.8 | 56.5 | 55.9 | ---- | ----- | 467735.1 |  |
| 69 | 11/17/2015 | 10:43:21 | Ood | 00:10.0 | 57.3 | 67.3 | 57.9 | 56.4 | -- | 57.9 | 57.9 | 57.6 | 56.5 | 56.2 | ---- | ----- | 537031.8 |  |
| 70 | 11/17/2015 | 10:43:31 | 00d | 00:10.0 | 60 | 70 | 60.9 | 57.8 | -- | 61.3 | 61.3 | 59.9 | 59.3 | 58.5 | ---- | ---- | 10000000 |  |
| 71 | 11/17/2015 | 10:43:41 | Ood | 00:10.0 | 61.1 | 71.1 | 62.1 | 60.3 | -- | 62.2 | 62.2 | 61.1 | 60.2 | 60 | ---- | ---- | 1288249.6 |  |
| 72 | 11/17/2015 | 10:43:51 | Ood | 00:10.0 | 58.8 | 68.8 | 60.9 | 55.8 | --- | 60.9 | 60.9 | 58.3 | 56.5 | 55.3 | ---- | ----- | 758577.6 |  |
| 73 | 11/17/2015 | 10:44:01 | Ood | 00:10.0 | 52.4 | 62.4 | 55.8 | 50.3 | -- | 54.8 | 54.8 | 51.5 | 50.1 | 50.1 | ---- | ----- | 173780.1 |  |
| 74 | 11/17/2015 | 10:44:11 | Ood | 00:10.0 | 57.8 | 67.8 | 61.8 | 50.3 | -- | 62.4 | 62.4 | 56.9 | 52.2 | 51 | ---- | ---- | 602559.6 |  |
| 75 | 11/17/2015 | 10:44:21 | Ood | 00:10.0 | 62.2 | 72.2 | 64.2 | 60.3 | -- | 64.4 | 64.4 | 61.9 | 60.8 | 59.8 | ---- | ----- | 1659586.9 |  |
| 76 | 11/17/2015 | 10:44:31 | Ood | 00:10.0 | 60.6 | 70.6 | 61.6 | 59.3 | $\cdots$ | 61.8 | 61.8 | 60.6 | 59.6 | 58.9 | ---- | ----- | 1148153.6 |  |
| 77 | 11/17/2015 | 10:44:41 | 00d | 00:10.0 | 58.9 | 68.9 | 59.6 | 56.8 | --- | 59.7 | 59.7 | 59.3 | 57 | 56.1 | ---- | ----- | 776247.1 |  |
| 78 | 11/17/2015 | 10:44:51 | 00d | 00:10.0 | 57.8 | 67.8 | 59.2 | 56.3 | -- | 59.5 | 59.5 | 58 | 56.5 | 56.1 | ---- | ----- | 602559.6 |  |
| 79 | 11/17/2015 | 10:45:01 | 00d | 00:10.0 | 58.8 | 68.8 | 59.6 | 57.9 | -- | 59.6 | 59.6 | 59.2 | 58 | 57.6 | ---- | ----- | 758577.6 |  |
| 80 | 11/17/2015 | 10:45:11 | Ood | 00:10.0 | 57.3 | 67.3 | 58.2 | 56.5 | -- | 58.6 | 58.6 | 57.2 | 56.9 | 56.4 | ---- | ----- | 537031.8 |  |
| 81 | 11/17/2015 | 10:45:21 | Ood | 00:10.0 | 59.8 | 69.8 | 61.9 | 57 | -- | 62.3 | 62.3 | 60.2 | 57 | 57 | ---- | ---- | 954992.6 |  |
| 82 | 11/17/2015 | 10:45:31 | Ood | 00:10.0 | 60.8 | 70.8 | 62.8 | 59 | --- | 63.1 | 63.1 | 60.8 | 58.8 | 58.7 | ---- | ----- | 1202264.4 |  |
| 83 | 11/17/2015 | 10:45:41 | Ood | 00:10.0 | 59.5 | 69.5 | 61.4 | 56.9 | -- | 61.9 | 61.9 | 59.3 | 56.5 | 56 | ---- | ----- | 891250.9 |  |
| 84 | 11/17/2015 | 10:45:51 | 00d | 00:10.0 | 56 | 66 | 60.4 | 51.6 | -- | 60.6 | 60.6 | 54.3 | 51.6 | 51.2 | ---- | ---- | 398107.2 |  |
| 85 | 11/17/2015 | 10:46:01 | Ood | 00:10.0 | 61.2 | 71.2 | 63.1 | 54.8 | --- | 62.9 | 62.9 | 61.3 | 59.7 | 57.9 | ---- | ----- | 1318256.7 |  |
| 86 | 11/17/2015 | 10:46:11 | Ood | 00:10.0 | 61.1 | 71.1 | 63.8 | 59 | $\cdots$ | 64.4 | 64.4 | 60.6 | 59.3 | 58.6 | ---- | ---- | 1288249.6 |  |
| 87 | 11/17/2015 | 10:46:21 | 00d | 00:10.0 | 60.7 | 70.7 | 64.8 | 58.5 | -- | 65.8 | 65.8 | 59 | 58.4 | 58 | --- | ----- | 1174897.6 |  |
| 88 | 11/17/2015 | 10:46:31 | Ood | 00:10.0 | 62.5 | 72.5 | 63.9 | 58.5 | -- | 64 | 64 | 62.8 | 60.4 | 59.2 | --- | ---- | 1778279.4 |  |
| 89 | 11/17/2015 | 10:46:41 | Ood | 00:10.0 | 60.2 | 70.2 | 62.7 | 59.3 | $\cdots$ | 62.1 | 62.1 | 60 | 59.4 | 59.1 | ---- | ----- | 1047128.5 |  |
| 90 | 11/17/2015 | 10:46:51 | 00d | 00:10.0 | 59.8 | 69.8 | 62 | 58.2 | $\cdots$ | 62.7 | 62.7 | 59 | 58 | 58 | ---- | ----- | 954992.6 |  |
| 91 | 11/17/2015 | 10:47:01 | Ood | 00:10.0 | 56 | 66 | 60.4 | 53.8 | -- | 58.7 | 58.7 | 55.3 | 53.7 | 53.6 | ---- | ----- | 398107.2 |  |
| 92 | 11/17/2015 | 10:47:11 | Ood | 00:10.0 | 56.1 | 66.1 | 57.1 | 53.8 | -- | 57.3 | 57.3 | 55.9 | 55.7 | 54.7 | ---- | ----- | 407380.3 |  |
| 93 | 11/17/2015 | 10:47:21 | 00d | 00:10.0 | 54.8 | 64.8 | 57.1 | 53 | -- | 56.7 | 56.7 | 54.4 | 53.1 | 52.8 | -- | ----- | 301995.2 |  |
| 94 | 11/17/2015 | 10:47:31 | Ood | 00:10.0 | 59.9 | 69.9 | 62.5 | 56.2 | -- | 63.1 | 63.1 | 59.4 | 58.7 | 57.9 | ---- | ----- | 977237.2 |  |
| 95 | 11/17/2015 | 10:47:41 | Ood | 00:10.0 | 64.8 | 74.8 | 69 | 60.2 | $\cdots$ | 69.9 | 69.9 | 61.9 | 60.2 | 59.4 | ---- | ----- | 3019951.7 |  |
| 96 | 11/17/2015 | 10:47:51 | 00d | 00:10.0 | 62.1 | 72.1 | 65.4 | 57.7 | -- | 66 | 66 | 60.9 | 57.6 | 56.8 | - | ----- | 1621810.1 |  |
| 97 | 11/17/2015 | 10:48:01 | Ood | 00:10.0 | 55.2 | 65.2 | 57.8 | 51.6 | -- | 58 | 58 | 55.6 | 51.9 | 50.8 | --- | ---- | 331131.1 |  |
| 98 | 11/17/2015 | 10:48:11 | Ood | 00:10.0 | 57.8 | 67.8 | 59 | 54.8 | --- | 59.3 | 59.3 | 57.8 | 56.5 | 56.3 | --- | ----- | 602559.6 |  |
| 99 | 11/17/2015 | 10:48:21 | Ood | 00:10.0 | 58.3 | 68.3 | 59.7 | 56.9 | $\cdots$ | 59.6 | 59.6 | 58.6 | 56.6 | 56.4 | ---- | ----- | 676083.0 |  |
| 100 | 11/17/2015 | 10:48:31 | 00d | 00:10.0 | 59.9 | 69.9 | 61.9 | 57.3 | -- | 62.4 | 62.4 | 60.7 | 57.4 | 55.7 | ---- | ----- | 977237.2 |  |
| 101 | 11/17/2015 | 10:48:41 | Ood | 00:10.0 | 60.8 | 70.8 | 61.6 | 57.9 | -- | 61.8 | 61.8 | 60.9 | 60.1 | 58.8 | --- | ---- | 1202264.4 |  |
| 102 | 11/17/2015 | 10:48:51 | ood | 00:10.0 | 59.2 | 69.2 | 61 | 58.3 | -- | 61.1 | 61.1 | 59.1 | 58.2 | 58 | -- | ----- | 831763.8 |  |
| 103 | 11/17/2015 | 10:49:01 | Ood | 00:10.0 | 57.7 | 67.7 | 59.2 | 57 | -- | 59.1 | 59.1 | 57.7 | 56.9 | 56.9 | ---- | ----- | 588843.7 |  |
| 104 | 11/17/2015 | 10:49:11 | Ood | 00:10.0 | 57.8 | 67.8 | 58.6 | 56.7 | -- | 58.9 | 58.9 | 57.5 | 56.7 | 56.7 | ---- | ----- | 602559.6 |  |
| 105 | 11/17/2015 | 10:49:21 | 00d | 00:10.0 | 57.8 | 67.8 | 60 | 54.3 | -- | 60.3 | 60.3 | 57.6 | 54.3 | 53.6 | --- | ---- | 602559.6 |  |
| 106 | 11/17/2015 | 10:49:31 | 00d | 00:10.0 | 61.2 | 71.2 | 65.4 | 53.4 | -- | 66.2 | 66.2 | 60.6 | 53.3 | 53.2 | -- | ---- | 1318256.7 |  |
| 107 | 11/17/2015 | 10:49:41 | Ood | 00:10.0 | 60.6 | 70.6 | 62.8 | 60 | -- | 61.4 | 61.4 | 60.5 | 59.8 | 59.8 | ---- | ----- | 1148153.6 |  |
| 108 | 11/17/2015 | 10:49:51 | 00d | 00:10.0 | 61.2 | 71.2 | 62.4 | 60.2 | -- | 62.8 | 62.8 | 61.3 | 60.1 | 60 | ---- | ----- | 1318256.7 |  |
| 109 | 11/17/2015 | 10:50:01 | 00d | 00:10.0 | 57.6 | 67.6 | 61 | 55.8 | -- | 59.7 | 59.7 | 57.8 | 55.7 | 55.7 | ---- | ---- | 575439.9 |  |
| 110 | 11/17/2015 | 10:50:11 | ood | 00:10.0 | 58.9 | 68.9 | 61.2 | 54.7 | -- | 61.9 | 61.9 | 58.8 | 54.8 | 54.4 | --- | ---- | 776247.1 |  |
| 111 | 11/17/2015 | 10:50:21 | Ood | 00:10.0 | 51.5 | 61.5 | 57.2 | 49.6 | -- | 54 | 54 | 50.9 | 49.7 | 49.2 | ---- | ----- | 141253.8 |  |
| 112 | 11/17/2015 | 10:50:31 | Ood | 00:10.0 | 56.2 | 66.2 | 58.8 | 53.3 | -- | 59.3 | 59.3 | 56.1 | 53.3 | 52.9 | ---- | ----- | 416869.4 |  |
| 113 | 11/17/2015 | 10:50:41 | 00d | 00:10.0 | 62.6 | 72.6 | 66.3 | 58.8 | -- | 67.1 | 67.1 | 61.3 | 59.2 | 58.9 | ---- | ----- | 1819700.9 |  |
| 114 | 11/17/2015 | 10:50:51 | Ood | 00:10.0 | 63.1 | 73.1 | 67.9 | 58.6 | -- | 67.7 | 67.7 | 60.7 | 58.1 | 57.9 | --- | --- | 2041737.9 |  |
| 115 | 11/17/2015 | 10:51:01 | Ood | 00:10.0 | 61.3 | 71.3 | 65 | 56.3 | -- | 65.5 | 65.5 | 60.6 | 56.1 | 55.1 | ---- | ----- | 1348962.9 |  |
| 116 | 11/17/2015 | 10:51:11 | 00d | 00:10.0 | 54.4 | 64.4 | 56.6 | 52 | -- | 56.8 | 56.8 | 53.6 | 52 | 51.9 | ---- | ----- | 275422.9 |  |
| 117 | 11/17/2015 | 10:51:21 | 00d | 00:10.0 | 61 | 71 | 64.3 | 56.4 | -- | 64.9 | 64.9 | 61.1 | 56.8 | 56.4 | --- | ----- | 1258925.4 |  |
| 118 | 11/17/2015 | 10:51:31 | ood | 00:10.0 | 67.5 | 77.5 | 72.3 | 63.2 | -- | 72.3 | 72.3 | 64.2 | 63.4 | 62.3 | --- | ---- | 5623413.3 |  |
| 119 | 11/17/2015 | 10:51:41 | 00d | 00:10.0 | 61.9 | 71.9 | 64.2 | 58 | -- | 63.8 | 63.8 | 62.4 | 58.1 | 57.6 | ---- | ---- | 1548816.6 |  |
| 120 | 11/17/2015 | 10:51:51 | Ood | 00:10.0 | 56.3 | 66.3 | 58.9 | 53.6 | -- | 59.2 | 59.2 | 56.3 | 53.9 | 51.9 | ---- | ---- | 426579.5 |  |
| 121 | 11/17/2015 | 10:52:01 |  | 00:10.0 | 49.4 | 59.4 | 53.6 | 47.9 | -- | 51.4 | 51.4 | 49 | 48.2 | 47.8 | --- | ---- | 87096.4 |  |


| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$ | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 |
| 122 | 11/17/2015 | 10:52:11 | 00d | 00:10.0 | 55.3 | 65.3 | 58.3 | 50.9 | -.- | 58.5 | 58.5 | 55.1 | 52.2 | 52 | ---- | -- | 338844.2 |  |
| 123 | 11/17/2015 | 10:52:21 | 00d | 00:10.0 | 59.5 | 69.5 | 61.8 | 52.8 | -- | 62.1 | 62.1 | 59.7 | 55.7 | 53.9 | ---- | ----- | 891250.9 |  |
| 124 | 11/17/2015 | 10:52:31 | 00d | 00:10.0 | 59 | 69 | 61.6 | 55.5 | -.- | 61.8 | 61.8 | 58.4 | 55.4 | 54.9 | ---- | ----- | 794328.2 |  |
| 125 | 11/17/2015 | 10:52:41 | 00d | 00:10.0 | 61.1 | 71.1 | 61.8 | 60.4 | -.- | 62 | 62 | 61.2 | 60.6 | 60.4 | ---- | ----- | 1288249.6 |  |
| 126 | 11/17/2015 | 10:52:51 | 00d | 00:10.0 | 62 | 72 | 63.7 | 58.8 | -.- | 64.1 | 64.1 | 62.2 | 59.1 | 57.6 | --- | ----- | 1584893.2 |  |
| 127 | 11/17/2015 | 10:53:01 | 00d | 00:10.0 | 56.6 | 66.6 | 58.8 | 56.1 | -.- | 57.5 | 57.5 | 56.5 | 56.1 | 55.8 | ---- | ----- | 457088.2 |  |
| 128 | 11/17/2015 | 10:53:11 | 00d | 00:10.0 | 58 | 68 | 59.3 | 56.1 | $\because$ | 59.9 | 59.9 | 57.9 | 56.7 | 55.1 | ---- | ----- | 630957.3 |  |
| 129 | 11/17/2015 | 10:53:21 | 00d | 00:10.0 | 64.2 | 74.2 | 69.6 | 55.4 | -.- | 70.1 | 70.1 | 61 | 56.2 | 55 | --- | ----- | 2630268.0 |  |
| 130 | 11/17/2015 | 10:53:31 | 00d | 00:10.0 | 60.5 | 70.5 | 65 | 59.5 | -.- | 62.1 | 62.1 | 60.2 | 59.8 | 59.2 | -- | ----- | 1122018.5 |  |
| 131 | 11/17/2015 | 10:53:41 | 00d | 00:10.0 | 58.1 | 68.1 | 59.6 | 57.8 | -.- | 58.6 | 58.6 | 58.1 | 57.7 | 57.6 | ---- | ----- | 645654.2 |  |
| 132 | 11/17/2015 | 10:53:51 | 00d | 00:10.0 | 58.9 | 68.9 | 61.8 | 55.7 | -.- | 62.4 | 62.4 | 58.9 | 55.6 | 55.5 | ---- | ----- | 776247.1 |  |
| 133 | 11/17/2015 | 10:54:01 | 00d | 00:10.0 | 61.1 | 71.1 | 63.5 | 59 | -.- | 64 | 64 | 60.7 | 59.4 | 58.3 | ---- | ----- | 1288249.6 |  |
| 134 | 11/17/2015 | 10:54:11 | 00d | 00:10.0 | 62 | 72 | 64.9 | 57.8 | -.- | 65.2 | 65.2 | 62.2 | 57.9 | 57.4 | ---- | --- | 1584893.2 |  |
| 135 | 11/17/2015 | 10:54:21 | 00d | 00:10.0 | 62.5 | 72.5 | 65 | 60.6 | -.- | 65.4 | 65.4 | 62 | 60.5 | 60.5 | ---- | ----- | 1778279.4 |  |
| 136 | 11/17/2015 | 10:54:31 | 00d | 00:10.0 | 60.9 | 70.9 | 64.5 | 60 | -.- | 61.7 | 61.7 | 61.1 | 59.9 | 59.4 | ---- | ----- | 1230268.8 |  |
| 137 | 11/17/2015 | 10:54:41 | 00d | 00:10.0 | 60.8 | 70.8 | 61.7 | 59.6 | -.- | 61.8 | 61.8 | 61.2 | 59.9 | 59.3 | ---- | ----- | 1202264.4 |  |
| 138 | 11/17/2015 | 10:54:51 | 00d | 00:10.0 | 57.4 | 67.4 | 59.6 | 56.3 | -.- | 59.2 | 59.2 | 57.5 | 56.5 | 55.9 | ---- | ----- | 549540.9 |  |



| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.4 |
| 206 | 11/17/2015 | 10:52:11 | 00d | 00:10.0 | 63.1 | 73.1 | 65.1 | 60.5 | $\because \cdot$ | 65 | 64.9 | 63.2 | 61.1 | 60.7 | ---- | ----- | 2041737.9 |  |
| 207 | 11/17/2015 | 10:52:21 | OOd | 00:10.0 | 66.4 | 76.4 | 67.2 | 62.7 | -- | 67.1 | 67 | 66.6 | 64.8 | 63.6 | ---- | ----- | 4365158.3 |  |
| 208 | 11/17/2015 | 10:52:31 | 00d | 00:10.0 | 66.2 | 76.2 | 67 | 65.3 | $\because$ | 66.9 | 66.7 | 66.1 | 65.7 | 65.5 | ---- | ----- | 4168693.8 |  |
| 209 | 11/17/2015 | 10:52:41 | 00d | 00:10.0 | 63.1 | 73.1 | 65.9 | 59.4 | -- | 65.4 | 65 | 63.4 | 59.5 | 59.5 | ---- | ----- | 2041737.9 |  |
| 210 | 11/17/2015 | 10:52:51 | 00d | 00:10.0 | 61.2 | 71.2 | 65 | 58.2 | $\because$ | 64.5 | 64 | 61.8 | 58.9 | 58.4 | ---- | ----- | 1318256.7 |  |
| 211 | 11/17/2015 | 10:53:01 | 00d | 00:10.0 | 60.4 | 70.4 | 63.6 | 55.6 | $\because$ | 63.2 | 62.9 | 59 | 55.9 | 55.8 | ---- | ----- | 1096478.2 |  |
| 212 | 11/17/2015 | 10:53:11 | 00d | 00:10.0 | 57.2 | 67.2 | 63.6 | 51.9 | $\because$ | 63.2 | 62.7 | 55.6 | 52.1 | 52 | ---- | ----- | 524807.5 |  |
| 213 | 11/17/2015 | 10:53:21 | 00d | 00:10.0 | 62.6 | 72.6 | 65.5 | 57.8 | -- | 65.3 | 65.1 | 61.2 | 59.4 | 59.2 | ---- | ----- | 1819700 |  |
| 214 | 11/17/2015 | 10:53:31 | 00d | 00:10.0 | 62.2 | 72.2 | 63.9 | 60.4 | -- | 63.8 | 63.8 | 61.6 | 60.6 | 60.5 | ---- | ----- | 1659586.9 |  |
| 215 | 11/17/2015 | 10:53:41 | 00d | 00:10.0 | 62.6 | 72.6 | 64.4 | 61 | -- | 64.2 | 64.1 | 62.2 | 61.2 | 61 | ---- | ----- | 1819700 |  |
| 216 | 11/17/2015 | 10:53:51 | 00d | 00:10.0 | 63.1 | 73.1 | 64.5 | 61.7 | -- | 64.4 | 64.2 | 62.9 | 61.9 | 61.8 | ---- | ----- | 2041737.9 |  |
| 217 | 11/17/2015 | 10:54:01 | 00d | 00:10.0 | 66.4 | 76.4 | 67.5 | 64.5 | -- | 67.5 | 67.4 | 66.2 | 65 | 64.9 | ---- | ----- | 4365158.3 |  |
| 218 | 11/17/2015 | 10:54:11 | 00d | 00:10.0 | 69.6 | 79.6 | 72.2 | 64.9 | -- | 72.1 | 72.1 | 68 | 65.2 | 65.1 | ---- | ----- | 9120108.4 |  |
| 219 | 11/17/2015 | 10:54:21 | 00d | 00:10.0 | 69.7 | 79.7 | 73.3 | 66.3 | -- | 73.1 | 72.7 | 68.6 | 66.6 | 66.4 | ---- | --- | 9332543.0 |  |
| 220 | 11/17/2015 | 10:54:31 | 00d | 00:10.0 | 67.1 | 77.1 | 72.8 | 60.7 | $\because$ | 72.1 | 70.8 | 68.9 | 62.3 | 61.5 | ---- | ----- | 5128613.8 |  |
| 221 | 11/17/2015 | 10:54:41 | 00d | 00:10.0 | 59.5 | 69.5 | 63.8 | 54.6 | -- | 63.4 | 63 | 57.3 | 54.9 | 54.7 | ---- | --- | 891250.9 |  |
| 222 | 11/17/2015 | 10:54:51 | 00d | 00:10.0 | 64.4 | 74.4 | 66.4 | 62.8 | -.- | 66.3 | 66.1 | 63.9 | 63.1 | 62.9 | ---- | ----- | 2754228.7 |  |


| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \\ & \hline \end{aligned}$ | Measure | emen | Time | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | Overall Leq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.3 |
| 70 | 11/17/2015 | 10:40:06 | ood | 00:10.0 | 81 | 91 | 86 | 70.3 | - | 85.7 | 84.9 | 78.9 | 72.4 | 71.4 | ---- | ---- | 125892541.2 |  |
| 71 | 11/17/2015 | 10:40:16 | 00d | 00:10.0 | 67.3 | 77.3 | 77.7 | 61.4 | -- | 76.7 | 75.5 | 65.7 | 61.7 | 61.5 | --- | ---- | 5370318.0 |  |
| 72 | 11/17/2015 | 10:40:26 | Ood | 00:10.0 | 60.3 | 70.3 | 61.5 | 59.6 | -- | 61.4 | 61.3 | 60.1 | 59.7 | 59.7 | --- | ----- | 1071519.3 |  |
| 73 | 11/17/2015 | 10:40:36 | Ood | 00:10.0 | 62.7 | 72.7 | 65.6 | 59.2 | -- | 65.5 | 65.3 | 62.3 | 59.7 | 59.5 | - | ---- | 1862087.1 |  |
| 74 | 11/17/2015 | 10:40:46 | Ood | 00:10.0 | 60.1 | 70.1 | 61.4 | 59 | -- | 61.3 | 61.3 | 59.5 | 59.2 | 59.2 | --- | ---- | 1023293.0 |  |
| 75 | 11/17/2015 | 10:40:56 | 00d | 00:10.0 | 59.8 | 69.8 | 61.6 | 58.9 | -- | 61.3 | 60.8 | 59.5 | 59 | 58.9 | ---- | ---- | 954992.6 |  |
| 76 | 11/17/2015 | 10:41:06 | Ood | 00:10.0 | 59.7 | 69.7 | 61.2 | 58.4 | -- | 61 | 60.9 | 59.2 | 58.6 | 58.5 | - | ---- | 933254.3 |  |
| 77 | 11/17/2015 | 10:41:16 | 00d | 00:10.0 | 60.4 | 70.4 | 61.3 | 59.7 | -- | 61.2 | 60.9 | 60.5 | 60.2 | 60 | - | ---- | 1096478.2 |  |
| 78 | 11/17/2015 | 10:41:26 | Ood | 00:10.0 | 60.1 | 70.1 | 60.7 | 59.1 | -- | 60.6 | 60.6 | 60.2 | 59.4 | 59.4 | --- | ---- | 1023293.0 |  |
| 79 | 11/17/2015 | 10:41:36 | Ood | 00:10.0 | 58.9 | 68.9 | 59.6 | 58.2 | -- | 59.5 | 59.3 | 58.8 | 58.4 | 58.4 | --- | ---- | 776247.1 |  |
| 80 | 11/17/2015 | 10:41:46 | Ood | 00:10.0 | 59.1 | 69.1 | 60 | 58.2 | -- | 60 | 59.9 | 59.1 | 58.3 | 58.3 | --- | ---- | 812830.5 |  |
| 81 | 11/17/2015 | 10:41:56 | Ood | 00:10.0 | 58.6 | 68.6 | 59.1 | 58.2 | -- | 59 | 59 | 58.7 | 58.3 | 58.3 | ---- | ---- | 724436.0 |  |
| 82 | 11/17/2015 | 10:42:06 | Ood | 00:10.0 | 59.9 | 69.9 | 60.7 | 58.3 | -- | 60.6 | 60.4 | 59.9 | 58.6 | 58.6 | --- | ---- | 977237.2 |  |
| 83 | 11/17/2015 | 10:42:16 | Ood | 00:10.0 | 59.6 | 69.6 | 62.1 | 56.4 | -- | 62 | 61.8 | 60 | 56.8 | 56.5 | --- | ---- | 912010.8 |  |
| 84 | 11/17/2015 | 10:42:26 | 00d | 00:10.0 | 55.3 | 65.3 | 56.7 | 54 | -- | 56.6 | 56.5 | 55.4 | 54.5 | 54.2 | ---- | --- | 338844.2 |  |
| 85 | 11/17/2015 | 10:42:36 | Ood | 00:10.0 | 54.1 | 64.1 | 54.6 | 53.3 | -- | 54.6 | 54.5 | 53.9 | 53.5 | 53.4 | --- | ---- | 257039.6 |  |
| 86 | 11/17/2015 | 10:42:46 | Ood | 00:10.0 | 57.5 | 67.5 | 59.1 | 54.6 | -- | 59 | 58.9 | 57.2 | 54.8 | 54.7 | --- | ----- | 562341.3 |  |
| 87 | 11/17/2015 | 10:42:56 | Ood | 00:10.0 | 57.9 | 67.9 | 58.9 | 56.6 | -- | 58.9 | 58.8 | 57.5 | 56.7 | 56.6 | --- | ---- | 616595.0 |  |
| 88 | 11/17/2015 | 10:43:06 | Ood | 00:10.0 | 60.2 | 70.2 | 62.3 | 58.2 | -- | 62.2 | 62 | 60 | 58.3 | 58.3 | --- | ---- | 1047128.5 |  |
| 89 | 11/17/2015 | 10:43:16 | Ood | 00:10.0 | 57.1 | 67.1 | 60.2 | 55.6 | -- | 59.5 | 59.1 | 57.5 | 55.8 | 55.8 | ---- | ---- | 512861.4 |  |
| 90 | 11/17/2015 | 10:43:26 | Ood | 00:10.0 | 55.4 | 65.4 | 56.9 | 54.6 | -- | 56.5 | 56.2 | 55.3 | 54.7 | 54.7 | --- | ---- | 346736.9 |  |
| 91 | 11/17/2015 | 10:43:36 | 00d | 00:10.0 | 55.9 | 65.9 | 56.9 | 54.7 | -- | 56.9 | 56.7 | 55.6 | 55.1 | 55 | --- | ---- | 389045.1 |  |
| 92 | 11/17/2015 | 10:43:46 | Ood | 00:10.0 | 56.6 | 66.6 | 57.5 | 55.7 | -- | 57.4 | 57.3 | 56.3 | 56 | 55.8 | - | ---- | 457088.2 |  |
| 93 | 11/17/2015 | 10:43:56 | Ood | 00:10.0 | 56.8 | 66.8 | 58.3 | 55.3 | -- | 58.1 | 58 | 56.9 | 55.5 | 55.4 | --- | ---- | 478630.1 |  |
| 94 | 11/17/2015 | 10:44:06 | Ood | 00:10.0 | 55.7 | 65.7 | 56.8 | 54.4 | -- | 56.7 | 56.5 | 55.9 | 54.9 | 54.5 | --- | ---- | 371535.2 |  |
| 95 | 11/17/2015 | 10:44:16 | Ood | 00:10.0 | 55.2 | 65.2 | 56.5 | 53.8 | -- | 56.4 | 56.3 | 55.1 | 53.9 | 53.9 | --- | ---- | 331131.1 |  |
| 96 | 11/17/2015 | 10:44:26 | Ood | 00:10.0 | 53.6 | 63.6 | 54.9 | 53.2 | -- | 54.6 | 54.2 | 53.6 | 53.3 | 53.3 | ---- | --- | 229086.8 |  |
| 97 | 11/17/2015 | 10:44:36 | Ood | 00:10.0 | 62.8 | 72.8 | 65.7 | 53.6 | -- | 65.1 | 65 | 62.1 | 54.3 | 53.8 | - | ---- | 1905460.7 |  |
| 98 | 11/17/2015 | 10:44:46 | Ood | 00:10.0 | 63.6 | 73.6 | 67.2 | 61.1 | -- | 67 | 66.7 | 62.8 | 61.3 | 61.2 | --- | ---- | 2290867.7 |  |
| 99 | 11/17/2015 | 10:44:56 | Ood | 00:10.0 | 58.1 | 68.1 | 61.5 | 56.2 | -- | 61.1 | 60.6 | 58.4 | 56.6 | 56.4 | --- | ---- | 645654.2 |  |
| 100 | 11/17/2015 | 10:45:06 | Ood | 00:10.0 | 57.7 | 67.7 | 59 | 56.2 | -- | 58.9 | 58.9 | 56.8 | 56.5 | 56.3 | --- | ---- | 588843.7 |  |
| 101 | 11/17/2015 | 10:45:16 | Ood | 00:10.0 | 59.7 | 69.7 | 61.5 | 58.6 | -- | 61.4 | 61.1 | 58.9 | 58.7 | 58.6 | --- | ---- | 933254.3 |  |
| 102 | 11/17/2015 | 10:45:26 | 00d | 00:10.0 | 60.6 | 70.6 | 63.2 | 58.1 | $\cdots$ | 63.1 | 63.1 | 60.4 | 58.2 | 58.2 | --- | ---- | 1148153.6 |  |
| 103 | 11/17/2015 | 10:45:36 | 00d | 00:10.0 | 58 | 68 | 59.4 | 56.9 | -- | 59.2 | 59 | 58.1 | 57.1 | 57 | ---- | $\cdots$ | 630957.3 |  |
| 104 | 11/17/2015 | 10:45:46 | Ood | 00:10.0 | 55.5 | 65.5 | 57.6 | 53.6 | -- | 57.3 | 57.1 | 56.2 | 53.9 | 53.9 | --- | ---- | 354813.4 |  |
| 105 | 11/17/2015 | 10:45:56 | Ood | 00:10.0 | 54.3 | 64.3 | 55.4 | 53.5 | -- | 55.3 | 55.3 | 53.9 | 53.6 | 53.6 | --- | ---- | 269153.5 |  |
| 106 | 11/17/2015 | 10:46:06 | Ood | 00:10.0 | 57.9 | 67.9 | 59.2 | 55 | -- | 59.2 | 59 | 57.8 | 55.1 | 55.1 | --- | --- | 616595.0 |  |
| 107 | 11/17/2015 | 10:46:16 | Ood | 00:10.0 | 58.1 | 68.1 | 59.3 | 57.1 | -- | 59.2 | 59.2 | 58.2 | 57.5 | 57.2 | --- | ---- | 645654.2 |  |
| 108 | 11/17/2015 | 10:46:26 | Ood | 00:10.0 | 56.9 | 66.9 | 57.7 | 55.9 | -- | 57.6 | 57.5 | 57.1 | 56.2 | 56 | ---- | ---- | 489778.8 |  |
| 109 | 11/17/2015 | 10:46:36 | Ood | 00:10.0 | 57 | 67 | 58.6 | 55.5 | -. | 58.5 | 58.4 | 56.1 | 55.7 | 55.6 | ---- | --- | 501187.2 |  |
| 110 | 11/17/2015 | 10:46:46 | Ood | 00:10.0 | 58.3 | 68.3 | 59.2 | 57.6 | -- | 59 | 59 | 58.2 | 57.7 | 57.7 | --- | ----- | 676083.0 |  |
| 111 | 11/17/2015 | 10:46:56 | Ood | 00:10.0 | 57 | 67 | 58 | 56.4 | -- | 57.9 | 57.6 | 57 | 56.5 | 56.5 | --- | ---- | 501187.2 |  |
| 112 | 11/17/2015 | 10:47:06 | Ood | 00:10.0 | 58.3 | 68.3 | 58.8 | 57 | --- | 58.6 | 58.6 | 58.4 | 57.2 | 57.1 | --- | ---- | 676083.0 |  |
| 113 | 11/17/2015 | 10:47:16 | Ood | 00:10.0 | 60.3 | 70.3 | 62.2 | 58.2 | -- | 62.2 | 62 | 59.9 | 58.6 | 58.5 | - | ---- | 1071519.3 |  |
| 114 | 11/17/2015 | 10:47:26 | Ood | 00:10.0 | 56.9 | 66.9 | 58.2 | 56.6 | -- | 57.8 | 57.4 | 56.9 | 56.7 | 56.7 | --- | ----- | 489778.8 |  |
| 115 | 11/17/2015 | 10:47:36 | Ood | 00:10.0 | 59.4 | 69.4 | 61.9 | 56.5 | -- | 61.7 | 61.2 | 58.9 | 56.9 | 56.6 | --- | ---- | 870963.6 |  |
| 116 | 11/17/2015 | 10:47:46 | Ood | 00:10.0 | 57.8 | 67.8 | 59.4 | 56.3 | -- | 59.4 | 59.1 | 57.2 | 56.6 | 56.4 | --- | ---- | 602559.6 |  |
| 117 | 11/17/2015 | 10:47:56 | 00d | 00:10.0 | 55.6 | 65.6 | 58.6 | 53.7 | -- | 58.2 | 58 | 55.9 | 54.3 | 53.9 | ---- | ---- | 363078.1 |  |
| 118 | 11/17/2015 | 10:48:06 | Ood | 00:10.0 | 53.2 | 63.2 | 55 | 51.8 | -- | 54.7 | 54.7 | 53 | 51.9 | 51.8 | --- | ---- | 208929.6 |  |
| 119 | 11/17/2015 | 10:48:16 | Ood | 00:10.0 | 52.5 | 62.5 | 53.4 | 51.8 | -- | 53.3 | 53.1 | 52.4 | 51.9 | 51.9 | --- | ---- | 177827.9 |  |
| 120 | 11/17/2015 | 10:48:26 | Ood | 00:10.0 | 52.6 | 62.6 | 53.7 | 51.3 | -- | 53.7 | 53.6 | 52.5 | 51.5 | 51.4 | --- | ---- | 181970.1 |  |
| 121 | 11/17/2015 | 10:48:36 | Ood | 00:10.0 | 52.6 | 62.6 | 54 | 51.3 | -- | 53.8 | 53.4 | 52.1 | 51.4 | 51.3 | --- | ----- | 181970.1 |  |
| 122 | 11/17/2015 | 10:48:46 | 00d | 00:10.0 | 59.1 | 69.1 | 61.7 | 54 | -- | 61.6 | 61.4 | 58 | 54.9 | 54.5 | --- | ---- | 812830.5 |  |
| 123 | 11/17/2015 | 10:48:56 | 00d | 00:10.0 | 61.9 | 71.9 | 64.1 | 57.5 | -- | 64 | 63.9 | 60.8 | 57.7 | 57.6 | --- | ---- | 1548816.6 |  |
| 124 | 11/17/2015 | 10:49:06 | Ood | 00:10.0 | 66.9 | 76.9 | 74.1 | 59.5 | -- | 73.6 | 72.2 | 61.8 | 60.2 | 60 | ---- | ----- | 4897788.2 |  |
| 125 | 11/17/2015 | 10:49:16 | Ood | 00:10.0 | 57.8 | 67.8 | 59.5 | 56.9 | -- | 59.3 | 59.2 | 57.6 | 57 | 57 | --- | ----- | 602559.6 |  |
| 126 | 11/17/2015 | 10:49:26 | Ood | 00:10.0 | 58.6 | 68.6 | 61.7 | 55.7 | -- | 59.7 | 59.6 | 57.7 | 56.1 | 56 | ---- | ---- | 724436.0 |  |
| 127 | 11/17/2015 | 10:49:36 | 00d | 00:10.0 | 60.1 | 70.1 | 64 | 57.1 | -- | 63.7 | 62.8 | 59.5 | 57.6 | 57.3 | ---- | -- | 1023293.0 |  |
| 128 | 11/17/2015 | 10:49:46 | Ood | 00:10.0 | 58.7 | 68.7 | 59.7 | 55.9 | -- | 59.7 | 59.6 | 59 | 57.2 | 56.5 | - | ---- | 741310.2 |  |
| 129 | 11/17/2015 | 10:49:56 | Ood | 00:10.0 | 52.8 | 62.8 | 55.9 | 51 | -- | 55.2 | 54.8 | 53.3 | 51.9 | 51.5 | --- | ---- | 190546.1 |  |
| 130 | 11/17/2015 | 10:50:06 | 00d | 00:10.0 | 56.2 | 66.2 | 58.5 | 50.6 | -- | 58.4 | 57.9 | 54.7 | 50.9 | 50.8 | --- | $\cdots$ | 416869.4 |  |
| 131 | 11/17/2015 | 10:50:16 | Ood | 00:10.0 | 55.5 | 65.5 | 58.5 | 53.9 | -- | 58.1 | 57.8 | 55.4 | 54.2 | 54 | --- | --- | 354813.4 |  |
| 132 | 11/17/2015 | 10:50:26 | Ood | 00:10.0 | 56.8 | 66.8 | 57.4 | 55.5 | -- | 57.3 | 57.2 | 56.7 | 56.2 | 56 | - | ----- | 478630.1 |  |
| 133 | 11/17/2015 | 10:50:36 | Ood | 00:10.0 | 55.4 | 65.4 | 58.8 | 52.8 | -- | 58.4 | 58.1 | 54.4 | 53.1 | 53 | ---- | ---- | 346736.9 |  |
| 134 | 11/17/2015 | 10:50:46 | 00d | 00:10.0 | 55.1 | 65.1 | 56.2 | 52.3 | -- | 56.1 | 56.1 | 55.2 | 52.4 | 52.4 | ---- | --- | 323593.7 |  |
| 135 | 11/17/2015 | 10:50:56 | Ood | 00:10.0 | 57.9 | 67.9 | 60.5 | 55.4 | -- | 60.1 | 59.2 | 56.2 | 55.6 | 55.5 | --- | ---- | 616595.0 |  |
| 136 | 11/17/2015 | 10:51:06 | Ood | 00:10.0 | 62.7 | 72.7 | 65.2 | 60.4 | -- | 64.6 | 64 | 62.3 | 61.5 | 61.4 | - | --- | 1862087.1 |  |
| 137 | 11/17/2015 | 10:51:16 | Ood | 00:10.0 | 59.3 | 69.3 | 62 | 57.5 | -. | 61.6 | 61.1 | 59.5 | 57.6 | 57.6 | --- | ---- | 851138.0 |  |
| 138 | 11/17/2015 | 10:51:26 | 00d | 00:10.0 | 57.8 | 67.8 | 58.3 | 56.9 | -- | 58.2 | 58.2 | 57.8 | 57.2 | 57 | ---- | ---- | 602559.6 |  |
| 139 | 11/17/2015 | 10:51:36 | Ood | 00:10.0 | 56.1 | 66.1 | 56.9 | 55.7 | -- | 56.7 | 56.6 | 56 | 55.8 | 55.8 | --- | ---- | 407380.3 |  |
| 140 | 11/17/2015 | 10:51:46 | Ood | 00:10.0 | 56.2 | 66.2 | 57.6 | 55.6 | -- | 57.5 | 57.4 | 56.1 | 55.8 | 55.7 | ---- | --- | 416869.4 |  |
| 141 | 11/17/2015 | 10:51:56 | Ood | 00:10.0 | 60.7 | 70.7 | 65.8 | 55.3 | -- | 65.2 | 64.5 | 59 | 55.4 | 55.4 | ---- | -- | 1174897.6 |  |
| 142 | 11/17/2015 | 10:52:06 | 00d | 00:10.0 | 56.2 | 66.2 | 58.3 | 54.7 | $\cdots$ | 57.7 | 57.5 | 56.2 | 54.9 | 54.7 | --- | ---- | 416869.4 |  |
| 143 | 11/17/2015 | 10:52:16 | Ood | 00:10.0 | 55.1 | 65.1 | 57.4 | 53.8 |  | 57.3 | 57.2 | 55 | 54.6 | 54.1 | --- | --- | 323593.7 |  |


| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.3 |
| 144 | 11/17/2015 | 10:52:26 | 00d | 00:10.0 | 54 | 64 | 55.6 | 53.2 | -- | 55.4 | 55 | 53.8 | 53.4 | 53.4 | --- | ---- | 251188.6 |  |
| 145 | 11/17/2015 | 10:52:36 | 00d | 00:10.0 | 52.8 | 62.8 | 54 | 51.8 | -.- | 53.9 | 53.6 | 52.9 | 52.2 | 51.9 | ---- | ----- | 190546.1 |  |
| 146 | 11/17/2015 | 10:52:46 | 00d | 00:10.0 | 55 | 65 | 56.5 | 51.7 | -- | 56.5 | 56.4 | 54.3 | 52 | 51.8 | ---- | ----- | 316227.8 |  |
| 147 | 11/17/2015 | 10:52:56 | 00d | 00:10.0 | 56 | 66 | 56.6 | 55.3 | -.- | 56.6 | 56.5 | 56 | 55.4 | 55.4 | ---- | ----- | 398107.2 |  |
| 148 | 11/17/2015 | 10:53:06 | 00d | 00:10.0 | 60.3 | 70.3 | 62.9 | 55.4 | -.- | 62.8 | 62.4 | 58.3 | 56 | 55.7 | ---- | ----- | 1071519.3 |  |
| 149 | 11/17/2015 | 10:53:16 | 00d | 00:10.0 | 61.5 | 71.5 | 63.5 | 58.8 | -.- | 63.5 | 63.4 | 61.8 | 59.4 | 59.1 | ---- | ----- | 1412537.5 |  |
| 150 | 11/17/2015 | 10:53:26 | 00d | 00:10.0 | 57.6 | 67.6 | 58.9 | 57.3 | -.- | 58.7 | 58.3 | 57.6 | 57.4 | 57.3 | --- | ----- | 575439.9 |  |
| 151 | 11/17/2015 | 10:53:36 | 00d | 00:10.0 | 57.5 | 67.5 | 58 | 56.9 | -.- | 57.9 | 57.8 | 57.4 | 57.1 | 57 | ---- | ----- | 562341.3 |  |
| 152 | 11/17/2015 | 10:53:46 | 00d | 00:10.0 | 60.2 | 70.2 | 62.6 | 57.2 | $\because$ | 62.5 | 61.9 | 59.1 | 57.8 | 57.5 | ---- | ----- | 1047128.5 |  |
| 153 | 11/17/2015 | 10:53:56 | 00d | 00:10.0 | 58.6 | 68.6 | 61.9 | 56.2 | -- | 61.7 | 61.4 | 58 | 56.8 | 56.6 | ---- | ----- | 724436.0 |  |
| 154 | 11/17/2015 | 10:54:06 | 00d | 00:10.0 | 55.5 | 65.5 | 56.5 | 54.2 | -- | 56.3 | 56.2 | 56 | 54.4 | 54.3 | -- | ----- | 354813.4 |  |
| 155 | 11/17/2015 | 10:54:16 | 00d | 00:10.0 | 53.6 | 63.6 | 55.3 | 52.3 | -. | 54.5 | 54.3 | 53.6 | 52.6 | 52.4 | ---- | ----- | 229086 |  |
| 156 | 11/17/2015 | 10:54:26 | 00d | 00:10.0 | 54.4 | 64.4 | 55.3 | 53.7 | -.- | 55.2 | 55.1 | 54.3 | 53.8 | 53.7 | ---- | ----- | 275422.9 |  |
| 157 | 11/17/2015 | 10:54:36 | 00d | 00:10.0 | 55 | 65 | 56 | 54 | -- | 56 | 55.9 | 54.8 | 54.2 | 54 | ---- | --- | 316227.8 |  |
| 158 | 11/17/2015 | 10:54:46 | 00d | 00:10.0 | 56.8 | 66.8 | 57.5 | 54.7 | -.- | 57.3 | 57.2 | 57 | 55 | 55 | --- | ----- | 478630.1 |  |
| 159 | 11/17/2015 | 10:54:56 | 00d | 00:10.0 | 59 | 69 | 61.2 | 57.4 | -.- | 60.9 | 60.1 | 58.1 | 57.8 | 57.7 | ---- | ----- | 794328.2 |  |



| Address | $\begin{aligned} & \text { Start } \\ & \text { Time } \end{aligned}$ | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c\|} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 |
| 159 | 11/17/2015 | 11:52:24 | 00d | 00:10.0 | 54.3 | 64.3 | 57.6 | 51.5 | -.- | 57.2 | 57.1 | 53.8 | 51.7 | 51.6 | ---- | ----- | 269153.5 |  |
| 160 | 11/17/2015 | 11:52:34 | 00d | 00:10.0 | 52.8 | 62.8 | 53.8 | 51.6 | -. | 53.6 | 53.5 | 52.9 | 51.9 | 51.7 | ---- | ---- | 190546.1 |  |
| 161 | 11/17/2015 | 11:52:44 | 00d | 00:10.0 | 54.3 | 64.3 | 54.8 | 53.3 | -- | 54.7 | 54.7 | 54.4 | 53.8 | 53.7 | ---- | ----- | 269153.5 |  |
| 162 | 11/17/2015 | 11:52:54 | 00d | 00:10.0 | 56.4 | 66.4 | 60 | 53 | -.- | 59.4 | 59 | 54.6 | 53.2 | 53.1 | ---- | ----- | 436515.8 |  |
| 163 | 11/17/2015 | 11:53:04 | 00d | 00:10.0 | 60.5 | 70.5 | 63.8 | 54.5 | -.- | 63.7 | 63.5 | 60.4 | 55.4 | 54.8 | --- | ---- | 1122018.5 |  |
| 164 | 11/17/2015 | 11:53:14 | 00d | 00:10.0 | 56.6 | 66.6 | 57.5 | 54.5 | -- | 57.5 | 57.4 | 56.8 | 54.9 | 54.8 | ---- | ---- | 457088.2 |  |
| 165 | 11/17/2015 | 11:53:24 | OOd | 00:10.0 | 63 | 73 | 66.2 | 55.9 | -. | 66 | 65.7 | 60.9 | 56.4 | 56.1 | --- | ----- | 1995262.3 |  |
| 166 | 11/17/2015 | 11:53:34 | 00d | 00:10.0 | 60.8 | 70.8 | 65 | 59.4 | -- | 64.7 | 64.6 | 59.9 | 59.5 | 59.4 | - | ---- | 1202264.4 |  |
| 167 | 11/17/2015 | 11:53:44 | 00d | 00:10.0 | 59 | 69 | 60 | 57.9 | -- | 59.8 | 59.7 | 59 | 58.1 | 58 | ---- | ---- | 794328.2 |  |
| 168 | 11/17/2015 | 11:53:54 | 00d | 00:10.0 | 60.6 | 70.6 | 61 | 59.2 | -- | 60.9 | 60.9 | 60.6 | 60 | 59.7 | ---- | ---- | 1148153.6 |  |
| 169 | 11/17/2015 | 11:54:04 | 00d | 00:10.0 | 56 | 66 | 59.4 | 55.3 | -- | 58.9 | 58.3 | 56 | 55.4 | 55.4 | ---- | ----- | 398107.2 |  |
| 170 | 11/17/2015 | 11:54:14 | 00d | 00:10.0 | 55.7 | 65.7 | 57.2 | 53.9 | -- | 57.1 | 57 | 55.9 | 54.2 | 54.1 | ---- | ----- | 371535.2 |  |
| 171 | 11/17/2015 | 11:54:24 | 00d | 00:10.0 | 54.4 | 64.4 | 55.4 | 53.6 | -. | 55.3 | 55.2 | 54 | 53.6 | 53.6 | ---- | ---- | 275422.9 |  |
| 172 | 11/17/2015 | 11:54:34 | 00d | 00:10.0 | 52.4 | 62.4 | 55.3 | 50.9 | -- | 55.1 | 54.8 | 52 | 51.2 | 51.1 | ---- | ---- | 173780.1 |  |
| 173 | 11/17/2015 | 11:54:44 | 00d | 00:10.0 | 52.4 | 62.4 | 55.2 | 49.5 | -. | 55.1 | 55 | 50.8 | 49.8 | 49.7 | ---- | ----- | 173780.1 |  |
| 174 | 11/17/2015 | 11:54:54 | 00d | 00:10.0 | 52.2 | 62.2 | 54.7 | 51.5 | -.- | 53.7 | 53 | 52.4 | 51.6 | 51.5 | ---- | ----- | 165958.7 |  |


| Address | Start <br> Time | Measur | emen | Time | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.9 |
| 107 | 11/17/2015 | 11:40:09 | 00d | 00:10.0 | 65.6 | 75.6 | 67.3 | 63.2 | -- | 67.2 | 67.1 | 65.7 | 63.8 | 63.5 | ---- | ----- | 3630780.5 |  |
| 108 | 11/17/2015 | 11:40:19 | ood | 00:10.0 | 59.3 | 69.3 | 63.2 | 57.5 | -- | 62.7 | 62.3 | 59.5 | 58.4 | 57.8 | ---- | ---- | 851138.0 |  |
| 109 | 11/17/2015 | 11:40:29 | 00d | 00:10.0 | 59.8 | 69.8 | 61.4 | 56.4 | -- | 61.3 | 61.2 | 59.4 | 57 | 56.6 | ---- | ---- | 954992.6 |  |
| 110 | 11/17/2015 | 11:40:39 | ood | 00:10.0 | 63.6 | 73.6 | 66.5 | 5.1 | -- | 66.4 | 66.3 | 60.8 | 57.3 | 57.2 | ---- | ---- | 2290867.7 |  |
| 111 | 11/17/2015 | 11:40:49 | 00d | 00:10.0 | 64.7 | 74.7 | 66.4 | 64 | -- | 66.1 | 65.8 | 64.6 | 64.2 | 64.1 | ---- | ----- | 2951209.2 |  |
| 112 | 11/17/2015 | 11:40:59 | Ood | 00:10.0 | 66 | 76 | 67.5 | 64.3 | -- | 67.4 | 67.3 | 65.9 | 64.6 | 64.5 | ---- | ----- | 3981071.7 |  |
| 113 | 11/17/2015 | 11:41:09 | Ood | 00:10.0 | 63.2 | 73.2 | 64.6 | 61.3 | -- | 64.3 | 64.3 | 64 | 61.5 | 61.4 | --- | ----- | 2089296.1 |  |
| 114 | 11/17/2015 | 11:41:19 | Ood | 00:10.0 | 60.1 | 70.1 | 61.8 | 58.8 | -- | 61.7 | 61.5 | 60.2 | 59 | 58.9 | ---- | ---- | 1023293.0 |  |
| 115 | 11/17/2015 | 11:41:29 | Ood | 00:10.0 | 62.1 | 72.1 | 63.1 | 58.8 | -- | 63 | 62.9 | 62.4 | 59 | 58.9 | ---- | ----- | 1621810.1 |  |
| 116 | 11/17/2015 | 11:41:39 | 00d | 00:10.0 | 62.2 | 72.2 | 63.3 | 59.8 | -- | 63.2 | 63.2 | 62.5 | 60.2 | 60 | --- | ----- | 1659586.9 |  |
| 117 | 11/17/2015 | 11:41:49 | ood | 00:10.0 | 61.8 | 71.8 | 63 | 59.7 | -- | 62.9 | 62.9 | 62.1 | 60 | 59.9 | ---- | ----- | 1513561.2 |  |
| 118 | 11/17/2015 | 11:41:59 | 00d | 00:10.0 | 63.6 | 73.6 | 65.2 | 60.3 | -- | 65.1 | 64.9 | 63.5 | 60.7 | 60.5 | --- | ---- | 2290867.7 |  |
| 119 | 11/17/2015 | 11:42:09 | Ood | 00:10.0 | 63.8 | 73.8 | 64.9 | 62.3 | -- | 64.8 | 64.8 | 63.7 | 62.5 | 62.4 | ---- | ---- | 2398832.9 |  |
| 120 | 11/17/2015 | 11:42:19 | Ood | 00:10.0 | 62 | 72 | 63.8 | 58.8 | -- | 63.6 | 63.4 | 62.8 | 59.2 | 59 | ---- | ----- | 1584893.2 |  |
| 121 | 11/17/2015 | 11:42:29 | Ood | 00:10.0 | 64.4 | 74.4 | 65.1 | 60.9 | -- | 65 | 64.9 | 64.5 | 63.2 | 62.3 | --- | ----- | 2754228.7 |  |
| 122 | 11/17/2015 | 11:42:39 | 00d | 00:10.0 | 64 | 74 | 66.9 | 61.2 | -- | 66.8 | 66.7 | 62.5 | 61.7 | 61.5 | $\cdots$ | ---- | 2511886.4 |  |
| 123 | 11/17/2015 | 11:42:49 | 00d | 00:10.0 | 63.5 | 73.5 | 66.8 | 62 | -- | 66.5 | 66.1 | 63.2 | 62.2 | 62.1 | --- | ---- | 2238721.1 |  |
| 124 | 11/17/2015 | 11:42:59 | Ood | 00:10.0 | 60.6 | 70.6 | 62.9 | 58.5 | -- | 62.8 | 62.8 | 59.9 | 58.9 | 58.8 | ---- | ----- | 1148153.6 |  |
| 125 | 11/17/2015 | 11:43:09 | Ood | 00:10.0 | 59.3 | 69.3 | 60.6 | 57.5 | -- | 60.5 | 60.5 | 59.2 | 57.7 | 57.6 | ---- | ----- | 851138.0 |  |
| 126 | 11/17/2015 | 11:43:19 | 00d | 00:10.0 | 64.4 | 74.4 | 66 | 60.5 | -- | 65.9 | 65.8 | 64.6 | 61.8 | 61.4 | --- | ----- | 2754228.7 |  |
| 127 | 11/17/2015 | 11:43:29 | 00d | 00:10.0 | 60.7 | 70.7 | 62.2 | 59.3 | -- | 62.1 | 62 | 60.6 | 59.6 | 59.4 | --- | ---- | 1174897.6 |  |
| 128 | 11/17/2015 | 11:43:39 | 00d | 00:10.0 | 61.6 | 71.6 | 63.8 | 59.9 | -- | 63.7 | 63.2 | 61 | 60.1 | 60 | --- | ----- | 1445439.8 |  |
| 129 | 11/17/2015 | 11:43:49 | Ood | 00:10.0 | 60.8 | 70.8 | 61.8 | 60.2 | -- | 61.7 | 61.7 | 60.6 | 60.3 | 60.3 | --- | ----- | 1202264.4 |  |
| 130 | 11/17/2015 | 11:43:59 | 00d | 00:10.0 | 60.1 | 70.1 | 63.2 | 56.2 | -- | 63 | 63 | 59.5 | 56.4 | 56.4 | --- | ----- | 1023293.0 |  |
| 131 | 11/17/2015 | 11:44:09 | Ood | 00:10.0 | 62.2 | 72.2 | 65 | 59.4 | -- | 64.2 | 63.5 | 60.9 | 59.7 | 59.6 | ---- | ---- | 1659586.9 |  |
| 132 | 11/17/2015 | 11:44:19 | Ood | 00:10.0 | 65.4 | 75.4 | 66.2 | 63.4 | -- | 66.1 | 66 | 65.7 | 64.5 | 64 | ---- | ---- | 3467368.5 |  |
| 133 | 11/17/2015 | 11:44:29 | ood | 00:10.0 | 63.9 | 73.9 | 65.5 | 61.7 | -- | 65.4 | 65.3 | 63.9 | 62.2 | 61.9 | ---- | ---- | 2454708.9 |  |
| 134 | 11/17/2015 | 11:44:39 | ood | 00:10.0 | 63.1 | 73.1 | 66 | 60.5 | -- | 65.8 | 65.3 | 61.8 | 60.8 | 60.6 | -- | ----- | 2041737.9 |  |
| 135 | 11/17/2015 | 11:44:49 | Ood | 00:10.0 | 63.1 | 73.1 | 66.1 | 60.7 | -- | 65.9 | 65.7 | 63.4 | 61.6 | 61.1 | --- | ---- | 2041737.9 |  |
| 136 | 11/17/2015 | 11:44:59 | 00d | 00:10.0 | 60.9 | 70.9 | 62.1 | 59.8 | -- | 62 | 61.9 | 60.6 | 60.3 | 60 | --- | ---- | 1230268.8 |  |
| 137 | 11/17/2015 | 11:45:09 | Ood | 00:10.0 | 58.7 | 68.7 | 61.2 | 57.2 | -- | 60.8 | 60.2 | 58.7 | 57.4 | 57.3 | ---- | ----- | 741310.2 |  |
| 138 | 11/17/2015 | 11:45:19 | Ood | 00:10.0 | 56.8 | 66.8 | 59.7 | 54.4 | -- | 59.6 | 59.4 | 56.7 | 55.4 | 54.8 | ---- | ----- | 478630.1 |  |
| 139 | 11/17/2015 | 11:45:29 | Ood | 00:10.0 | 53.6 | 63.6 | 55.5 | 52.2 | -- | 55.2 | 54.8 | 53.2 | 52.5 | 52.3 | --- | ---- | 229086.8 |  |
| 140 | 11/17/2015 | 11:45:39 | Ood | 00:10.0 | 58.5 | 68.5 | 61.5 | 54.6 | -- | 61.3 | 61.2 | 56.8 | 54.7 | 54.7 | --- | ---- | 707945.8 |  |
| 141 | 11/17/2015 | 11:45:49 | 00d | 00:10.0 | 63.5 | 73.5 | 64.9 | 60.9 | -- | 64.8 | 64.6 | 63.4 | 61.1 | 61 | ---- | ----- | 2238721.1 |  |
| 142 | 11/17/2015 | 11:45:59 | Ood | 00:10.0 | 64.7 | 74.7 | 66.9 | 62.7 | -- | 66.7 | 66.5 | 64.3 | 63.2 | 62.9 | ---- | ---- | 2951209.2 |  |
| 143 | 11/17/2015 | 11:46:09 | 00d | 00:10.0 | 63.6 | 73.6 | 65.6 | 61 | -- | 65.5 | 65.5 | 62.7 | 61.2 | 61.1 | ---- | ---- | 2290867.7 |  |
| 144 | 11/17/2015 | 11:46:19 | 00d | 00:10.0 | 65.8 | 75.8 | 67.2 | 64.3 | -- | 67.1 | 66.9 | 65.6 | 64.5 | 64.4 | --- | ---- | 3801894.0 |  |
| 145 | 11/17/2015 | 11:46:29 | Ood | 00:10.0 | 66.5 | 76.5 | 67.2 | 65.3 | -- | 67.1 | 67 | 66.5 | 66 | 65.9 | ---- | ---- | 4466835.9 |  |
| 146 | 11/17/2015 | 11:46:39 | Ood | 00:10.0 | 63.5 | 73.5 | 66.7 | 59.8 | -- | 66.5 | 66.3 | 63 | 61.1 | 60.6 | ---- | ---- | 2238721.1 |  |
| 147 | 11/17/2015 | 11:46:49 | Ood | 00:10.0 | 60.5 | 70.5 | 62.4 | 56.5 | -- | 62.3 | 62.2 | 60.4 | 56.8 | 56.7 | --- | --- | 1122018.5 |  |
| 148 | 11/17/2015 | 11:46:59 | Ood | 00:10.0 | 62.4 | 72.4 | 63.7 | 61.3 | -- | 63.5 | 63 | 62.3 | 61.5 | 61.4 | - | ---- | 1737800.8 |  |
| 149 | 11/17/2015 | 11:47:09 | 00d | 00:10.0 | 65.5 | 75.5 | 68.8 | 61.2 | -- | 68.3 | 67.7 | 64.1 | 61.6 | 61.4 | ---- | ----- | 3548133.9 |  |
| 150 | 11/17/2015 | 11:47:19 | 00d | 00:10.0 | 66.7 | 76.7 | 70.1 | 64.2 | -- | 70 | 69.9 | 65.6 | 64.4 | 64.2 | ---- | ---- | 4677351.4 |  |
| 151 | 11/17/2015 | 11:47:29 | Ood | 00:10.0 | 60.7 | 70.7 | 64.7 | 58.4 | -- | 64.7 | 64.5 | 60.2 | 58.8 | 58.6 | --- | --- | 1174897.6 |  |
| 152 | 11/17/2015 | 11:47:39 | Ood | 00:10.0 | 62.4 | 72.4 | 64.6 | 58.4 | -- | 64.5 | 64.2 | 62 | 59.5 | 58.6 | ---- | ---- | 1737800.8 |  |
| 153 | 11/17/2015 | 11:47:49 | Ood | 00:10.0 | 65.2 | 75.2 | 67.8 | 60.8 | -- | 67.7 | 67.5 | 63.1 | 61.9 | 61.2 | ---- | ---- | 3311311.2 |  |
| 154 | 11/17/2015 | 11:47:59 | 00d | 00:10.0 | 63 | 73 | 66.3 | 60 | -- | 66 | 65.7 | 63.5 | 60.7 | 60.4 | --- | ---- | 1995262.3 |  |
| 155 | 11/17/2015 | 11:48:09 | Ood | 00:10.0 | 64 | 74 | 64.9 | 60 | -- | 64.8 | 64.8 | 64.1 | 60.7 | 60.2 | ---- | ---- | 2511886.4 |  |
| 156 | 11/17/2015 | 11:48:19 | Ood | 00:10.0 | 62.3 | 72.3 | 64.2 | 60.1 | -- | 64 | 63.9 | 62.6 | 60.3 | 60.3 | --- | ---- | 1698243.7 |  |
| 157 | 11/17/2015 | 11:48:29 | Ood | 00:10.0 | 64.6 | 74.6 | 65.6 | 62 | -- | 65.5 | 65.4 | 65 | 62.3 | 62.2 | --- | ---- | 2884031.5 |  |
| 158 | 11/17/2015 | 11:48:39 | 00d | 00:10.0 | 62.7 | 72.7 | 64.4 | 59.1 | -- | 64.3 | 64.2 | 62.9 | 59.4 | 59.2 | ---- | ---- | 1862087.1 |  |
| 159 | 11/17/2015 | 11:48:49 | Ood | 00:10.0 | 63 | 73 | 64.9 | 61.7 | -- | 64.8 | 64.8 | 62.6 | 62.2 | 62 | ---- | ---- | 1995262.3 |  |
| 160 | 11/17/2015 | 11:48:59 | Ood | 00:10.0 | 60.2 | 70.2 | 61.7 | 58.8 | -- | 61.3 | 61.2 | 60.2 | 59 | 58.9 | --- | --- | 1047128.5 |  |
| 161 | 11/17/2015 | 11:49:09 | Ood | 00:10.0 | 60.6 | 70.6 | 61.9 | 59.9 | -- | 61.8 | 61.7 | 60.3 | 60.1 | 60 | --- | ----- | 1148153.6 |  |
| 162 | 11/17/2015 | 11:49:19 | Ood | 00:10.0 | 68.5 | 78.5 | 71.9 | 60.1 | -- | 71.8 | 71.6 | 64.8 | 60.6 | 60.3 | --- | ----- | 7079457.8 |  |
| 163 | 11/17/2015 | 11:49:29 | Ood | 00:10.0 | 63.4 | 73.4 | 71.3 | 60.9 | -- | 70.7 | 69.4 | 62.5 | 61.4 | 61.3 | ---- | ----- | 2187761.6 |  |
| 164 | 11/17/2015 | 11:49:39 | Ood | 00:10.0 | 58.6 | 68.6 | 60.9 | 54.5 | -- | 60.7 | 60.4 | 59.3 | 56.1 | 55.3 | --- | ---- | 724436.0 |  |
| 165 | 11/17/2015 | 11:49:49 | ood | 00:10.0 | 61.4 | 71.4 | 63.9 | 54.1 | -- | 63.7 | 63.6 | 60.6 | 54.2 | 54.1 | ---- | ----- | 1380384.3 |  |
| 166 | 11/17/2015 | 11:49:59 | Ood | 00:10.0 | 64.4 | 74.4 | 65 | 63.4 | -- | 64.9 | 64.8 | 64.4 | 63.7 | 63.5 | ---- | ----- | 2754228.7 |  |
| 167 | 11/17/2015 | 11:50:09 | 00d | 00:10.0 | 63.5 | 73.5 | 64.3 | 62.7 | -- | 64.3 | 64.2 | 63.2 | 62.9 | 62.8 | ---- | ---- | 2238721.1 |  |
| 168 | 11/17/2015 | 11:50:19 | 00d | 00:10.0 | 64.5 | 74.5 | 65.3 | 63.7 | -- | 65.2 | 65.2 | 64.5 | 63.9 | 63.8 | ---- | ---- | 2818382.9 |  |
| 169 | 11/17/2015 | 11:50:29 | 00d | 00:10.0 | 61.6 | 71.6 | 64.2 | 60.5 | -- | 63.6 | 63.5 | 61.6 | 60.8 | 60.7 | ---- | ----- | 1445439.8 |  |
| 170 | 11/17/2015 | 11:50:39 | Ood | 00:10.0 | 63.1 | 73.1 | 64.8 | 61.5 | -- | 64.7 | 64.4 | 63 | 61.8 | 61.7 | ---- | ---- | 2041737.9 |  |
| 171 | 11/17/2015 | 11:50:49 | Ood | 00:10.0 | 61.4 | 71.4 | 62.6 | 59.7 | -- | 62.5 | 62.3 | 61.7 | 60.1 | 59.9 | ---- | ----- | 1380384.3 |  |
| 172 | 11/17/2015 | 11:50:59 | Ood | 00:10.0 | 64.1 | 74.1 | 66 | 61.3 | -- | 65.8 | 65.6 | 63.6 | 62.6 | 62.4 | --- | ----- | 2570395.8 |  |
| 173 | 11/17/2015 | 11:51:09 | Ood | 00:10.0 | 63.1 | 73.1 | 64.4 | 61.7 | -- | 64.4 | 64.2 | 63.1 | 61.9 | 61.8 | --- | ---- | 2041737.9 |  |
| 174 | 11/17/2015 | 11:51:19 | Ood | 00:10.0 | 63.3 | 73.3 | 65.4 | 60.5 | -- | 64.9 | 64.1 | 63.2 | 61 | 60.8 | ---- | ---- | 2137962.1 |  |
| 175 | 11/17/2015 | 11:51:29 | Ood | 00:10.0 | 58.4 | 68.4 | 64.4 | 53.9 | -- | 63.3 | 62.5 | 58.1 | 54.4 | 54.1 | --- | ---- | 691831.0 |  |
| 176 | 11/17/2015 | 11:51:39 | Ood | 00:10.0 | 58.7 | 68.7 | 61.8 | 53.3 | -- | 61.7 | 61.6 | 57.5 | 53.6 | 53.4 | --- | ---- | 741310.2 |  |
| 177 | 11/17/2015 | 11:51:49 | Ood | 00:10.0 | 63.6 | 73.6 | 64.7 | 61.5 | -- | 64.6 | 64.6 | 63.1 | 62.2 | 61.8 | ---- | --- | 2290867.7 |  |
| 178 | 11/17/2015 | 11:51:59 | Ood | 00:10.0 | 61.8 | 71.8 | 64.1 | 58.4 | -- | 64 | 63.9 | 62 | 59.4 | 58.8 | ---- | ---- | 1513561.2 |  |
| 179 | 11/17/2015 | 11:52:09 | Ood | 00:10.0 | 60.1 | 70.1 | 63.8 | 54.7 |  | 63.2 | 62.8 | 58.5 | 55.1 | 54.8 | --- | --- | 1023293.0 |  |


| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.9 |
| 180 | 11/17/2015 | 11:52:19 | 00d | 00:10.0 | 61.5 | 71.5 | 64.5 | 59.4 | --- | 64.4 | 64.3 | 60.8 | 59.7 | 59.6 | ---- | ----- | 1412537.5 |  |
| 181 | 11/17/2015 | 11:52:29 | 00d | 00:10.0 | 64.5 | 74.5 | 67.1 | 60.4 | $\because \cdot$ | 66.6 | 65.9 | 62.9 | 60.7 | 60.5 | ---- | ----- | 2818382.9 |  |
| 182 | 11/17/2015 | 11:52:39 | 00d | 00:10.0 | 65.7 | 75.7 | 68.5 | 59.4 | -- | 68.4 | 68.3 | 66.6 | 60.8 | 60.2 | ---- | ----- | 3715352.3 |  |
| 183 | 11/17/2015 | 11:52:49 | 00d | 00:10.0 | 58.3 | 68.3 | 60.1 | 57.1 | -- | 60 | 59.8 | 58.2 | 57.4 | 57.3 | ---- | ----- | 676083.0 |  |
| 184 | 11/17/2015 | 11:52:59 | 00d | 00:10.0 | 59 | 69 | 59.9 | 57.6 | -- | 59.8 | 59.7 | 59 | 58 | 57.9 | --- | ----- | 794328.2 |  |
| 185 | 11/17/2015 | 11:53:09 | 00d | 00:10.0 | 57 | 67 | 58 | 55.4 | -- | 57.7 | 57.5 | 57.2 | 55.8 | 55.6 | ---- | --- | 501187.2 |  |
| 186 | 11/17/2015 | 11:53:19 | 00d | 00:10.0 | 59 | 69 | 59.3 | 57.4 | -- | 59.3 | 59.2 | 58.9 | 58.1 | 57.9 | -- | ----- | 794328.2 |  |
| 187 | 11/17/2015 | 11:53:29 | 00d | 00:10.0 | 61.2 | 71.2 | 62.7 | 59.2 | -- | 62.6 | 62.4 | 60.9 | 60 | 59.4 | ---- | --- | 1318256.7 |  |
| 188 | 11/17/2015 | 11:53:39 | 00d | 00:10.0 | 59.4 | 69.4 | 62.2 | 54.9 | -- | 62.2 | 61.8 | 58.9 | 55.2 | 55 | -- | ----- | 870963.6 |  |
| 189 | 11/17/2015 | 11:53:49 | 00d | 00:10.0 | 64.4 | 74.4 | 66.3 | 61.1 | -- | 66.2 | 66.2 | 64.4 | 61.4 | 61.3 | ---- | ----- | 2754228.7 |  |
| 190 | 11/17/2015 | 11:53:59 | 00d | 00:10.0 | 63.5 | 73.5 | 64.8 | 58.9 | -- | 64.7 | 64.7 | 64.3 | 59.3 | 59.1 | ---- | ----- | 2238721.1 |  |
| 191 | 11/17/2015 | 11:54:09 | 00d | 00:10.0 | 64.1 | 74.1 | 65.9 | 62.1 | -- | 65.8 | 65.7 | 64.2 | 62.3 | 62.2 | ---- | ----- | 2570395.8 |  |
| 192 | 11/17/2015 | 11:54:19 | 00d | 00:10.0 | 62.5 | 72.5 | 64.6 | 60.4 | -- | 63.9 | 63.7 | 63 | 61 | 60.6 | ---- | -- | 1778279.4 |  |
| 193 | 11/17/2015 | 11:54:29 | 00d | 00:10.0 | 63.2 | 73.2 | 64 | 62.3 | -. | 64 | 63.8 | 63.2 | 62.4 | 62.3 | ---- | --- | 2089296.1 |  |
| 194 | 11/17/2015 | 11:54:39 | 00d | 00:10.0 | 61.7 | 71.7 | 63.5 | 60.8 | -.- | 63.3 | 63.1 | 61.6 | 61.1 | 60.9 | ---- | --- | 1479108.4 |  |
| 195 | 11/17/2015 | 11:54:49 | 00d | 00:10.0 | 62 | 72 | 63.2 | 61 | -- | 63.1 | 63 | 61.9 | 61.1 | 61.1 | ---- | --- | 1584893.2 |  |
| 196 | 11/17/2015 | 11:54:59 | 00d | 00:10.0 | 60.5 | 70.5 | 61.6 | 59.7 | -.- | 61.4 | 61.3 | 60.4 | 59.8 | 59.8 | --- | ----- | 1122018.5 |  |


| Address | Start <br> Time | Measure | reme | Time | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | Overall <br> Leq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 |
| 12 | 11/17/2015 | 11:40:05 | Ood | 00:10.0 | 66.5 | 76.5 | 69.5 | 61.9 | -. | 69.4 | 69.4 | 65.9 | 62.3 | 61.5 | -- | ----- | 4466835.9 |  |
| 13 | 11/17/2015 | 11:40:15 | Ood | 00:10.0 | 64.3 | 74.3 | 66.2 | 62.2 | -- | 66.3 | 66.3 | 64.4 | 62 | 61.9 | --- | ----- | 2691534.8 |  |
| 14 | 11/17/2015 | 11:40:25 | Ood | 00:10.0 | 62.6 | 72.6 | 63.1 | 62 | - | 63.1 | 63.1 | 62.6 | 62.1 | 61.9 | ---- | ----- | 1819700.9 |  |
| 15 | 11/17/2015 | 11:40:35 | Ood | 00:10.0 | 62 | 72 | 64.2 | 60 | -- | 64.5 | 64.5 | 61.6 | 60 | 60 | ---- | ----- | 1584893.2 |  |
| 16 | 11/17/2015 | 11:40:45 | Ood | 00:10.0 | 62.8 | 72.8 | 63.9 | 60.9 | -- | 64.2 | 64.2 | 63.2 | 60.9 | 60.5 | ---- | ----- | 1905460.7 |  |
| 17 | 11/17/2015 | 11:40:55 | Ood | 00:10.0 | 61.5 | 71.5 | 64.2 | 60 | $\cdots$ | 64 | 64 | 60.8 | 60.2 | 59.1 | ---- | ----- | 1412537.5 |  |
| 18 | 11/17/2015 | 11:41:05 | Ood | 00:10.0 | 62.7 | 72.7 | 66 | 57.3 | -- | 66.3 | 66.3 | 61.6 | 57.4 | 56.7 | ---- | ---- | 1862087.1 |  |
| 19 | 11/17/2015 | 11:41:15 | Ood | 00:10.0 | 62.6 | 72.6 | 66.1 | 58.8 | -- | 66.1 | 66.1 | 62.7 | 60 | 57 | ---- | ---- | 1819700.9 |  |
| 20 | 11/17/2015 | 11:41:25 | Ood | 00:10.0 | 57.9 | 67.9 | 60.9 | 55.1 |  | 61.9 | 61.9 | 57.7 | 55 | 54.7 | ---- |  | 616595.0 |  |
| 21 | 11/17/2015 | 11:41:35 | Ood | 00:10.0 | 59.3 | 69.3 | 60.5 | 58.4 | -- | 60.7 | 60.7 | 59.4 | 58.4 | 58 | ---- | ---- | 851138.0 |  |
| 22 | 11/17/2015 | 11:41:45 | Ood | 00:10.0 | 60.2 | 70.2 | 62.6 | 58.4 | -- | 63 | 63 | 59.2 | 58.7 | 58.5 | ---- | ----- | 1047128.5 |  |
| 23 | 11/17/2015 | 11:41:55 | Ood | 00:10.0 | 65.8 | 75.8 | 66.7 | 62.6 | $\because$ | 67 | 67 | 65.8 | 64.8 | 63.6 | ---- | ---- | 3801894.0 |  |
| 24 | 11/17/2015 | 11:42:05 | Ood | 00:10.0 | 64.9 | 74.9 | 67.4 | 63 | -- | 67.6 | 67.6 | 64.5 | 62.9 | 62.1 | ---- | ----- | 3090295.4 |  |
| 25 | 11/17/2015 | 11:42:15 | Ood | 00:10.0 | 64.6 | 74.6 | 66.1 | 61.8 | -- | 66.3 | 66.3 | 65.3 | 61.8 | 61.8 | ---- | ---- | 2884031.5 |  |
| 26 | 11/17/2015 | 11:42:25 | Ood | 00:10.0 | 69.9 | 79.9 | 73.8 | 64.5 | -- | 74.5 | 74.5 | 68.4 | 64.7 | 64.1 | ---- | ---- | 9772372.2 |  |
| 27 | 11/17/2015 | 11:42:35 | Ood | 00:10.0 | 64.8 | 74.8 | 66.1 | 63.5 | -- | 66.6 | 66.6 | 64.5 | 64 | 63.5 | ---- |  | 3019951.7 |  |
| 28 | 11/17/2015 | 11:42:45 | Ood | 00:10.0 | 62.6 | 72.6 | 65.4 | 61.7 | -- | 63.8 | 63.8 | 62.6 | 61.6 | 61.2 | ---- | ---- | 1819700.9 |  |
| 29 | 11/17/2015 | 11:42:55 | 00d | 00:10.0 | 62.8 | 72.8 | 64.3 | 59.8 | - | 64.4 | 64.4 | 63.3 | 60 | 59.1 | ---- | ----- | 1905460.7 |  |
| 30 | 11/17/2015 | 11:43:05 | Ood | 00:10.0 | 60.9 | 70.9 | 62.8 | 57.9 | $\cdots$ | 63 | 63 | 61.4 | 57.9 | 57.8 | ---- | ----- | 1230268.8 |  |
| 31 | 11/17/2015 | 11:43:15 | Ood | 00:10.0 | 61 | 71 | 63.1 | 57.7 | -- | 63.5 | 63.5 | 60.9 | 57.5 | 57.3 | ---- | ----- | 1258925.4 |  |
| 32 | 11/17/2015 | 11:43:25 | Ood | 00:10.0 | 58.9 | 68.9 | 61.3 | 55.9 | $\cdots$ | 61.9 | 61.9 | 58.4 | 55.9 | 55.8 | ---- | ---- | 776247.1 |  |
| 33 | 11/17/2015 | 11:43:35 | Ood | 00:10.0 | 60.9 | 70.9 | 63.4 | 59.1 | -- | 64 | 64 | 60.3 | 58.8 | 57.5 | ---- | ---- | 1230268.8 |  |
| 34 | 11/17/2015 | 11:43:45 | ood | 00:10.0 | 61.4 | 71.4 | 63.3 | 58.1 | -- | 63.8 | 63.8 | 60.8 | 58.7 | 57.8 | ---- | ---- | 1380384.3 |  |
| 35 | 11/17/2015 | 11:43:55 | Ood | 00:10.0 | 63.5 | 73.5 | 65.1 | 61.7 | -- | 65.4 | 65.4 | 63.3 | 61.7 | 61 | ---- | ---- | 2238721.1 |  |
| 36 | 11/17/2015 | 11:44:05 | Ood | 00:10.0 | 64.8 | 74.8 | 68.3 | 60.3 | -- | 68.6 | 68.6 | 63.6 | 60.3 | 59.6 | ---- | ---- | 3019951.7 |  |
| 37 | 11/17/2015 | 11:44:15 | Ood | 00:10.0 | 60.7 | 70.7 | 68.7 | 52.5 | -- | 66.9 | 66.9 | 59.4 | 52.2 | 52 | ---- | ---- | 1174897.6 |  |
| 38 | 11/17/2015 | 11:44:25 | Ood | 00:10.0 | 64.2 | 74.2 | 66.4 | 52.1 | -- | 66.5 | 66.5 | 65.4 | 54.8 | 53.1 | ---- | ---- | 2630268.0 |  |
| 39 | 11/17/2015 | 11:44:35 | Ood | 00:10.0 | 64.6 | 74.6 | 66.1 | 63.1 | $\cdots$ | 66.2 | 66.2 | 64.9 | 63 | 62.7 | ---- | ---- | 2884031.5 |  |
| 40 | 11/17/2015 | 11:44:45 | Ood | 00:10.0 | 63.7 | 73.7 | 66.5 | 61.2 | -- | 66.5 | 66.5 | 63.6 | 61.3 | 60.2 | ---- | ---- | 2344228.8 |  |
| 41 | 11/17/2015 | 11:44:55 | Ood | 00:10.0 | 61.4 | 71.4 | 65.6 | 52.8 | -- | 65.4 | 65.4 | 59.1 | 52.5 | 52.2 | ---- | ---- | 1380384.3 |  |
| 42 | 11/17/2015 | 11:45:05 | Ood | 00:10.0 | 60.7 | 70.7 | 63.2 | 52.4 | -- | 63.3 | 63.3 | 62.1 | 54.2 | 52.4 | ---- | ---- | 1174897.6 |  |
| 43 | 11/17/2015 | 11:45:15 | Ood | 00:10.0 | 62.8 | 72.8 | 64.1 | 61.5 | -- | 64.4 | 64.4 | 62.6 | 61.7 | 61.2 | ---- | ---- | 1905460.7 |  |
| 44 | 11/17/2015 | 11:45:25 | Ood | 00:10.0 | 63.4 | 73.4 | 65.9 | 60.5 | -- | 65.7 | 65.7 | 63.4 | 60.4 | 60.1 | ---- | ----- | 2187761.6 |  |
| 45 | 11/17/2015 | 11:45:35 | Ood | 00:10.0 | 63.2 | 73.2 | 65.2 | 61.1 | -- | 65.1 | 65.1 | 63.5 | 61 | 60.7 | ---- | ---- | 2089296.1 |  |
| 46 | 11/17/2015 | 11:45:45 | Ood | 00:10.0 | 61.8 | 71.8 | 63.2 | 60.1 | -- | 63.6 | 63.6 | 61.9 | 60 | 59.8 | ---- | ---- | 1513561.2 |  |
| 47 | 11/17/2015 | 11:45:55 | Ood | 00:10.0 | 65.1 | 75.1 | 66.5 | 62.9 | -- | 66.9 | 66.9 | 65 | 63.7 | 63.2 | ---- | ----- | 3235936.6 |  |
| 48 | 11/17/2015 | 11:46:05 | Ood | 00:10.0 | 64.6 | 74.6 | 65.3 | 63.6 | -- | 65.6 | 65.6 | 64.6 | 64.1 | 62.5 | ---- | ---- | 2884031.5 |  |
| 49 | 11/17/2015 | 11:46:15 | Ood | 00:10.0 | 64.7 | 74.7 | 66.1 | 62.9 | -- | 66.4 | 66.4 | 64.5 | 63.4 | 62.6 | ---- | ---- | 2951209.2 |  |
| 50 | 11/17/2015 | 11:46:25 | Ood | 00:10.0 | 65.7 | 75.7 | 66.4 | 64.5 | -- | 66.6 | 66.6 | 66 | 64.4 | 64.2 | ---- | ----- | 3715352.3 |  |
| 51 | 11/17/2015 | 11:46:35 | 00d | 00:10.0 | 66.8 | 76.8 | 68.6 | 64.8 | -- | 68.8 | 68.8 | 66.9 | 64.9 | 64.1 | ---- | ----- | 4786300.9 |  |
| 52 | 11/17/2015 | 11:46:45 | 00d | 00:10.0 | 59 | 69 | 64.8 | 57.4 | -- | 61.6 | 61.6 | 58.5 | 57.7 | 56.5 | ---- | ---- | 794328.2 |  |
| 53 | 11/17/2015 | 11:46:55 | Ood | 00:10.0 | 58.5 | 68.5 | 60.7 | 56.6 | -- | 61.1 | 61.1 | 57.7 | 56.7 | 56.4 | ---- | ---- | 707945.8 |  |
| 54 | 11/17/2015 | 11:47:05 | Ood | 00:10.0 | 59.2 | 69.2 | 60.9 | 56.5 | --- | 61.3 | 61.3 | 59.4 | 56.9 | 56.7 | ---- | ---- | 831763.8 |  |
| 55 | 11/17/2015 | 11:47:15 | Ood | 00:10.0 | 56.9 | 66.9 | 60.8 | 55.5 | -- | 59 | 59 | 57.1 | 55 | 55 | ---- | ---- | 489778.8 |  |
| 56 | 11/17/2015 | 11:47:25 | Ood | 00:10.0 | 61.5 | 71.5 | 63.6 | 58.4 | -- | 64.1 | 64.1 | 61.2 | 58.9 | 58.9 | ---- | ---- | 1412537.5 |  |
| 57 | 11/17/2015 | 11:47:35 | Ood | 00:10.0 | 62.2 | 72.2 | 63.6 | 60.5 | -- | 63.8 | 63.8 | 63 | 60.5 | 60.4 | ---- | ---- | 1659586.9 |  |
| 58 | 11/17/2015 | 11:47:45 | Ood | 00:10.0 | 59.9 | 69.9 | 61.6 | 58.2 | -- | 61.5 | 61.5 | 59.9 | 58 | 57.9 | ---- | --- | 977237.2 |  |
| 59 | 11/17/2015 | 11:47:55 | Ood | 00:10.0 | 65.5 | 75.5 | 66.4 | 61 | -- | 66.6 | 66.6 | 65.5 | 64.6 | 63.7 | ---- | ---- | 3548133.9 |  |
| 60 | 11/17/2015 | 11:48:05 | Ood | 00:10.0 | 65.6 | 75.6 | 67 | 63.6 | -- | 67.4 | 67.4 | 65.9 | 63.8 | 63.3 | ---- | ---- | 3630780.5 |  |
| 61 | 11/17/2015 | 11:48:15 | Ood | 00:10.0 | 65.5 | 75.5 | 67.3 | 63.9 | -- | 67.3 | 67.3 | 65.3 | 64.3 | 64 | -- | ---- | 3548133.9 |  |
| 62 | 11/17/2015 | 11:48:25 | Ood | 00:10.0 | 66.6 | 76.6 | 67.8 | 64.1 | -- | 68 | 68 | 66.9 | 65.6 | 64.3 | ---- | ----- | 4570881.9 |  |
| 63 | 11/17/2015 | 11:48:35 | Ood | 00:10.0 | 67.5 | 77.5 | 68.6 | 66.4 | -- | 68.9 | 68.9 | 67.4 | 66.5 | 66.1 | ---- | ---- | 5623413.3 |  |
| 64 | 11/17/2015 | 11:48:45 | Ood | 00:10.0 | 64 | 74 | 67 | 61.5 | -- | 67.1 | 67.1 | 63.2 | 61.8 | 61.3 | ---- | ---- | 2511886.4 |  |
| 65 | 11/17/2015 | 11:48:55 | Ood | 00:10.0 | 61.3 | 71.3 | 63.5 | 58.1 | -- | 63.9 | 63.9 | 61.1 | 57.7 | 57.6 | --- | ---- | 1348962.9 |  |
| 66 | 11/17/2015 | 11:49:05 | Ood | 00:10.0 | 62 | 72 | 62.9 | 59.5 | -- | 63 | 63 | 62.3 | 60.3 | 59.1 | ---- | ---- | 1584893.2 |  |
| 67 | 11/17/2015 | 11:49:15 | Ood | 00:10.0 | 61.6 | 71.6 | 63.8 | 57.8 | -- | 64.1 | 64.1 | 61.1 | 57.7 | 57.3 | -- | ----- | 14454398 |  |
| 68 | 11/17/2015 | 11:49:25 | Ood | 00:10.0 | 59.1 | 69.1 | 60.6 | 57.8 | -- | 61 | 61 | 58.7 | 58 | 58 | ---- | ----- | 812830.5 |  |
| 69 | 11/17/2015 | 11:49:35 | Ood | 00:10.0 | 57.3 | 67.3 | 58.3 | 56.6 | -- | 58.7 | 58.7 | 57.2 | 56.9 | 56.4 | -- | ---- | 537031.8 |  |
| 70 | 11/17/2015 | 11:49:45 | Ood | 00:10.0 | 56.4 | 66.4 | 58.8 | 54.5 | -- | 59.1 | 59.1 | 56.1 | 54.7 | 54.4 | ---- | ----- | 436515.8 |  |
| 71 | 11/17/2015 | 11:49:55 | Ood | 00:10.0 | 62.7 | 72.7 | 65.1 | 55 | -. | 65.3 | 65.3 | 63.3 | 56.6 | 55.7 | ---- | ---- | 1862087.1 |  |
| 72 | 11/17/2015 | 11:50:05 | Ood | 00:10.0 | 64.6 | 74.6 | 66.6 | 61.6 | -- | 66.7 | 66.7 | 64.6 | 62.5 | 60.8 | --- | ---- | 2884031.5 |  |
| 73 | 11/17/2015 | 11:50:15 | Ood | 00:10.0 | 64.2 | 74.2 | 65.5 | 62.2 | -- | 66 | 66 | 64.1 | 62.6 | 61.9 | --- | ----- | 2630268.0 |  |
| 74 | 11/17/2015 | 11:50:25 | Ood | 00:10.0 | 66.8 | 76.8 | 69.2 | 60.8 | -- | 69.3 | 69.3 | 68.3 | 61.2 | 60.6 | -- | ----- | 4786300.9 |  |
| 75 | 11/17/2015 | 11:50:35 | 00d | 00:10.0 | 63.3 | 73.3 | 68.8 | 60.6 | -- | 67.2 | 67.2 | 61.8 | 60.5 | 60.3 | -- | ----- | 2137962.1 |  |
| 76 | 11/17/2015 | 11:50:45 | Ood | 00:10.0 | 60.6 | 70.6 | 62.7 | 58.6 | -- | 63.3 | 63.3 | 60 | 58.6 | 58.3 | ---- | ----- | 1148153.6 |  |
| 77 | 11/17/2015 | 11:50:55 | Ood | 00:10.0 | 60.6 | 70.6 | 63.3 | 59.3 | -- | 63.3 | 63.3 | 60.4 | 59.4 | 59.1 | ---- | ---- | 1148153.6 |  |
| 78 | 11/17/2015 | 11:51:05 | Ood | 00:10.0 | 65.9 | 75.9 | 70.2 | 59.7 | -- | 71 | 71 | 62.8 | 60.1 | 59.5 | ---- | ---- | 3890451.4 |  |
| 79 | 11/17/2015 | 11:51:15 | Ood | 00:10.0 | 64.7 | 74.7 | 70 | 59.5 | -- | 70.2 | 70.2 | 62.7 | 59.4 | 58.7 | ---- | ---- | 2951209.2 |  |
| 80 | 11/17/2015 | 11:51:25 | 00d | 00:10.0 | 59.5 | 69.5 | 60.2 | 58.8 | -- | 60.3 | 60.3 | 59.4 | 59.2 | 58.4 | ---- | ---- | 891250.9 |  |
| 81 | 11/17/2015 | 11:51:35 | Ood | 00:10.0 | 59.3 | 69.3 | 62 | 57.8 | -- | 62.6 | 62.6 | 58.6 | 57.8 | 57.7 | ---- | ---- | 851138.0 |  |
| 82 | 11/17/2015 | 11:51:45 | Ood | 00:10.0 | 57.8 | 67.8 | 59.7 | 56.1 |  | 60.3 | 60.3 | 57.7 | 56.3 | 56 | -- | ---- | 602559.----- |  |


| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{array}{\|c} \hline \text { Overall } \\ \text { Leq } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 |
| 83 | 11/17/2015 | 11:51:55 | 00d | 00:10.0 | 60.5 | 70.5 | 63.5 | 58 | -.- | 64.1 | 64.1 | 59.8 | 57.8 | 57.5 | ---- | ----- | 1122018.5 |  |
| 84 | 11/17/2015 | 11:52:05 | 00d | 00:10.0 | 64.8 | 74.8 | 65.7 | 63.5 | -.- | 66.1 | 66.1 | 64.4 | 64 | 64 | ---- | ----- | 3019951.7 |  |
| 85 | 11/17/2015 | 11:52:15 | OOd | 00:10.0 | 60.1 | 70.1 | 64.6 | 59.3 | -.- | 61.5 | 61.5 | 60.1 | 59.1 | 59.1 | ---- | ----- | 1023293.0 |  |
| 86 | 11/17/2015 | 11:52:25 | 00d | 00:10.0 | 63.2 | 73.2 | 65.3 | 60.6 | -.- | 65.4 | 65.4 | 62.3 | 61.5 | 60.4 | ---- | ----- | 2089296.1 |  |
| 87 | 11/17/2015 | 11:52:35 | OOd | 00:10.0 | 65.7 | 75.7 | 67.4 | 63 | -.- | 67.5 | 67.5 | 65.2 | 63.1 | 62.8 | ---- | ----- | 3715352.3 |  |
| 88 | 11/17/2015 | 11:52:45 | 00d | 00:10.0 | 63.5 | 73.5 | 67.5 | 56.3 | -.- | 67.2 | 67.2 | 62.4 | 56.3 | 55.6 | ---- | ----- | 2238721.1 |  |
| 89 | 11/17/2015 | 11:52:55 | OOd | 00:10.0 | 62.6 | 72.6 | 66.7 | 55.6 | -.- | 66.8 | 66.8 | 59.5 | 56.5 | 55.2 | ---- | ----- | 1819700.9 |  |
| 90 | 11/17/2015 | 11:53:05 | OOd | 00:10.0 | 63.5 | 73.5 | 67.8 | 58.8 | -.- | 68.2 | 68.2 | 62.4 | 59.1 | 58.8 | ---- | ----- | 2238721.1 |  |
| 91 | 11/17/2015 | 11:53:15 | 00d | 00:10.0 | 56.3 | 66.3 | 60.3 | 52.3 | -- | 60.5 | 60.5 | 54.6 | 52.2 | 52.1 | ---- | ----- | 426579.5 |  |
| 92 | 11/17/2015 | 11:53:25 | 00d | 00:10.0 | 55.4 | 65.4 | 58.1 | 53.2 | -- | 57.8 | 57.8 | 54.8 | 53.3 | 53.3 | ---- | ----- | 346736.9 |  |
| 93 | 11/17/2015 | 11:53:35 | OOd | 00:10.0 | 62.8 | 72.8 | 64.4 | 57.3 | -.- | 64.6 | 64.6 | 62.7 | 62 | 58.3 | ---- | ----- | 1905460.7 |  |
| 94 | 11/17/2015 | 11:53:45 | 00d | 00:10.0 | 60.9 | 70.9 | 63 | 59.2 | $\because$ | 63.1 | 63.1 | 60.8 | 59.5 | 59.1 | ---- | --- | 1230268.8 |  |
| 95 | 11/17/2015 | 11:53:55 | OOd | 00:10.0 | 65.2 | 75.2 | 66.5 | 60.6 | -.- | 67 | 67 | 65.1 | 64 | 63.1 | ---- | ----- | 3311311.2 |  |
| 96 | 11/17/2015 | 11:54:05 | OOd | 00:10.0 | 69.1 | 79.1 | 71.7 | 65.6 | -.- | 72.2 | 72.2 | 69.3 | 65.7 | 65.4 | ---- | ----- | 8128305.2 |  |
| 97 | 11/17/2015 | 11:54:15 | 00d | 00:10.0 | 63.5 | 73.5 | 71.1 | 61.6 | -.- | 66.2 | 66.2 | 63.4 | 62 | 61.4 | ---- | --- | 2238721.1 |  |
| 98 | 11/17/2015 | 11:54:25 | 00d | 00:10.0 | 62.9 | 72.9 | 64.6 | 61.3 | -- | 64.6 | 64.6 | 62.9 | 61.2 | 60.6 | ---- | ----- | 1949844.6 |  |
| 99 | 11/17/2015 | 11:54:35 | 00d | 00:10.0 | 61.3 | 71.3 | 63.1 | 59.8 | -.- | 63.9 | 63.9 | 61.1 | 59.9 | 59.1 | ---- | ----- | 1348962.9 |  |
| 100 | 11/17/2015 | 11:54:45 | 00d | 00:10.0 | 60.9 | 70.9 | 62.2 | 59.2 | -.- | 62.3 | 62.3 | 61.3 | 59.6 | 58.2 | ---- | ----- | 1230268.8 |  |
| 101 | 11/17/2015 | 11:54:55 | OOd | 00:10.0 | 59.8 | 69.8 | 61.7 | 56.7 | -.- | 61.9 | 61.9 | 60.1 | 57 | 56 | ---- | ----- | 954992.6 |  |



| Address | Start <br> Time | Measurement Time |  |  | Leq | LE | LMAX | LMIN | Ly | LN1 | LN2 | LN3 | LN4 | LN5 | Over | Under | Inverse Log | $\begin{gathered} \text { Overall } \\ \text { Leq } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2 |
| 129 | 11/17/2015 | 11:52:13 | 00d | 00:10.0 | 67.5 | 77.5 | 68.5 | 65.6 | --- | 68.3 | 68.3 | 67.7 | 66.1 | 65.8 | ---- | ----- | 5623413.3 |  |
| 130 | 11/17/2015 | 11:52:23 | 00d | 00:10.0 | 66 | 76 | 68.4 | 64.4 | $\because$ | 68 | 67.8 | 65.5 | 64.6 | 64.5 | ---- | ----- | 3981071.7 |  |
| 131 | 11/17/2015 | 11:52:33 | 00d | 00:10.0 | 67.4 | 77.4 | 69.4 | 61.9 | -. | 69.3 | 69.2 | 68 | 63.7 | 62.9 | ---- | ----- | 5495408.7 |  |
| 132 | 11/17/2015 | 11:52:43 | 00d | 00:10.0 | 63.2 | 73.2 | 66.3 | 55.6 | -- | 66.2 | 65.8 | 63.3 | 57.5 | 56.4 | ---- | ----- | 2089296.1 |  |
| 133 | 11/17/2015 | 11:52:53 | 00d | 00:10.0 | 58.4 | 68.4 | 59.3 | 55.2 | -.- | 59.2 | 59 | 58.7 | 55.8 | 55.3 | ---- | ----- | 691831.0 |  |
| 134 | 11/17/2015 | 11:53:03 | 00d | 00:10.0 | 59 | 69 | 61.2 | 56.3 | -- | 61.2 | 61 | 58.9 | 57 | 56.7 | ---- | ----- | 794328.2 |  |
| 135 | 11/17/2015 | 11:53:13 | 00d | 00:10.0 | 55.3 | 65.3 | 56.3 | 54.1 | -- | 56.1 | 56 | 55.5 | 54.2 | 54.2 | ---- | ----- | 338844.2 |  |
| 136 | 11/17/2015 | 11:53:23 | 00d | 00:10.0 | 58.8 | 68.8 | 60.2 | 55.4 | -- | 60 | 59.5 | 58.8 | 55.6 | 55.5 | ---- | --- | 758577.6 |  |
| 137 | 11/17/2015 | 11:53:33 | 00d | 00:10.0 | 61.7 | 71.7 | 63.8 | 58.1 | -.- | 63.7 | 63.5 | 62 | 58.3 | 58.2 | --- | ----- | 1479108.4 |  |
| 138 | 11/17/2015 | 11:53:43 | 00d | 00:10.0 | 64.3 | 74.3 | 66.3 | 61.4 | -.- | 65.7 | 65.3 | 63.6 | 61.7 | 61.5 | ---- | ----- | 2691534.8 |  |
| 139 | 11/17/2015 | 11:53:53 | 00d | 00:10.0 | 67.4 | 77.4 | 69.9 | 64.5 | -.- | 69.8 | 69.7 | 67.2 | 64.8 | 64.6 | ---- | ----- | 5495408.7 |  |
| 140 | 11/17/2015 | 11:54:03 | 00d | 00:10.0 | 67.3 | 77.3 | 68.5 | 65 | -- | 68.4 | 68.3 | 67.1 | 65.3 | 65.1 | ---- | ----- | 5370318.0 |  |
| 141 | 11/17/2015 | 11:54:13 | 00d | 00:10.0 | 67.7 | 77.7 | 69.8 | 66.2 | -.- | 69.7 | 69.4 | 67.5 | 66.4 | 66.3 | ---- | ----- | 5888436.6 |  |
| 142 | 11/17/2015 | 11:54:23 | 00d | 00:10.0 | 67.3 | 77.3 | 68.1 | 65.7 | -.- | 68 | 67.9 | 67.5 | 66.3 | 65.8 | ---- | ----- | 5370318.0 |  |
| 143 | 11/17/2015 | 11:54:33 | 00d | 00:10.0 | 64.2 | 74.2 | 65.9 | 62.6 | -- | 65.8 | 65.3 | 64.4 | 62.9 | 62.7 | ---- | ----- | 2630268.0 |  |
| 144 | 11/17/2015 | 11:54:43 | 00d | 00:10.0 | 62.8 | 72.8 | 64.4 | 62.1 | -- | 64.2 | 63.9 | 62.8 | 62.2 | 62.2 | ---- | ----- | 1905460.7 |  |
| 145 | 11/17/2015 | 11:54:53 | 00d | 00:10.0 | 65.5 | 75.5 | 66.9 | 62.6 | -.- | 66.8 | 66.7 | 65.2 | 63.4 | 63.4 | ---- | ----- | 3548133.9 |  |

## Appendix D <br> Traffic Data Summary <br> (CD)

| Link | Route 7 Loudest Hour Traffic Volumes (By Link) |  |  |  | Total Heavy Trucks | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Direction | Loudest Hour | Total Cars | Total Medium Trucks |  |  |
| Reston Parkway to Baren Cameron Ave | EB* | 6:00 AM | 3337 | 136 | 51 | 55 |
|  | WB |  | 790 | 62 | 14 |  |
|  | WB* | 3:00 PM | 2652 | 103 | 131 |  |
|  | EB |  | 1750 | 103 | 52 | 55 |
| Baren Cameron Ave to Towlston Rd | EB* | 6:00 AM | 4645 | 190 | 71 | 55 |
|  | WB |  | 1100 | 87 | 19 |  |
|  | WB* | 3:00 PM | 3692 | 143 | 183 | 55 |
|  | EB |  | 2436 | 143 | 72 | 5 |
| Towlston Rd to Lewinsville Rd | EB* | 6:00 AM | 4284 | 175 | 66 | 55 |
|  | WB |  | 1015 | 80 | 18 |  |
|  | WB* | 3:00 PM | 3405 | 132 | 169 | 55 |
|  | EB |  | 2247 | 132 | 67 |  |
| Lewinsville Rd to Jarret Valley Dr | EB* | 6:00 AM | 3698 | 151 | 57 | 45 |
|  | WB |  | 876 | 69 | 15 |  |
|  | WB* | 3:00 PM | 2939 | 114 | 146 | 45 |
|  | EB |  | 1939 | 114 | 57 |  |
| Westbound Dulles Toll off-ramp to Route 7 Eeastbound | EB* | 6:00 AM | 146 | 23 | 5 | 35 |
|  | WB* | 3:00 PM | 484 | 26 | 11 |  |
| Westbound Route 7 to Westbound Dulles Toll on-ramp | EB* | 6:00 AM | 475 | 10 | 3 | 25 |
|  | WB* | 3:00 PM | 1556 | 43 | 40 |  |
| Eastbound Route 7 to Westbound Dulles | EB* | 6:00 AM | 33 | 2 | 0 | 20 |
| Toll on-ramp | WB* | 3:00 PM | 89 | 2 | 2 |  |
| Dulles Access Rd | EB* | 6:00 AM | 758 | 54 | 27 | 57 |
|  | WB |  | 922 | 31 | 20 |  |
|  | WB* | 3:00 PM | 2032 | 45 | 56 | 55 |
|  | EB |  | 1738 | 60 | 22 | 55 |
| Dulles Toll Rd | EB* | 6:00 AM | 5037 | 244 | 179 | 55 |
|  | WB |  | 2497 | 254 | 137 | 62 |
|  | WB* | 3:00 PM | 5197 | 1650 | 146 | 62 |
|  | EB |  | 3612 | 157 | 154 | 55 |

* Indicates the direction of Route 7 in which the loudest hour correspondes to for that specific TNM model.

| Cross Streets | Direction | Hour | Total Cars | Total Med Trucks | Total Heavy Trucks | Speed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reston Parkway | NB | 6:00 AM | 746 | 5 | 5 | 45 |
|  | SB |  | 177 | 4 | 2 | 47 |
| Baron Cameron Ave | NB | 6:00 AM | 2141 | 15 | 15 | 45 |
|  | SB |  | 507 | 13 | 5 | 47 |
| Springvale Ave | NB | 3:00 PM | 207 | 4 | 2 | 40 |
|  | SB |  | 318 | 4 | 2 | 39 |
| Colvin Run Rd | EB | 3:00 PM | 182 | 3 | 2 | 40 |
|  | WB |  | 277 | 3 | 1 | 39 |
| Beaulah Rd | NB | 6:00 AM | 398 | 3 | 3 | 38 |
|  | SB |  | 95 | 2 | 1 | 40 |
| Towlston Rd Northbound | NB | 3:00 AM | 155 | 3 | 2 | 40 |
|  | SB |  | 238 | 3 | 1 | 39 |
| Towlston Rd Southbound | NB | 6:00 AM | 248 | 2 | 2 | 39 |
|  | SB |  | 59 | 1 | 1 | 40 |
| Lewinsville Rd | NB | 3:00 PM | 388 | 7 | 4 | 38 |
|  | SB |  | 595 | 7 | 3 | 35 |

## Appendix E

TNM Noise Modeling Data (CD)

# COMMONWEALTH of VIRGINIA 

DEPARTMENT OF TRANSPORTATION
4975 Alliance Drive
Fairfax, VA 22030
CHARLES A. KILPATRICK, P.E. COWWSS OWER

March 17, 2016

## MEMORANDUM

TO: William Dunn PE, Project Manager
Regina Newman, Environmental Contact
FROM: LJ Muchenje PE, Noise Abatement
SUBJECT: Roule 7 Corridor Improvements Project, UPC 52328
The 2009 General Assembly passed Chapter 120 (HB 2577, as amended by HB2025), which amends the Code of Virginia by adding in Article I5 of Chapter I of Title 33.1 a section numbered 33.1-223.2:21, relating to highway noise abatement.

House Bill 2025 States: Requires that whenever the Commonwealth Transportation Board or the Department plan for or undertake any highway construction or improvement project and such project includes or may include the requirement for the mitigation of traffic noise impacts, first consideration should be given to the use of noise reducing design and low noise pavement materials and techniques in lieu of construction of noise walls or sound barriers. Vegetative screening, such as the planting of appropriate conifers, in such a design would be utilized to act as a visual screen if visual screening is required.

In an effort to honor the intent of HB 2025 we are asking for your input (per Chapter VI of Materials Division's Manual of Instruction and Section 2B-3 Determination of Roadway Design of the VDOT Road Design manual (pages 2B-5 and 2B-6)). As part of the Noise Technical Report and technical files, we are seeking your professional opinion by providing comments for the project noted above. Please distribute this memorandum to the appropriate District staff and combine all responses into one response.

Should you have any questions, please contact me at (804) xxx -xxxx. Thank you for your time and consideration regarding this request.

Comment: Is noise reducing design feasible in lieu of construction of noise walls or sound barriers? For example, the roadway alignment can be shifted away from noise sensitive receptors or the roadway can be placed in deep cut (Location \& Design to address)
Response: The horizontal alignment for this project was developed with the intent of limiting the right of way impacts to the properties fionting Route 7 while preserving the existing median for salfely. The current design, arrived at through altemative studies and public input, provides the best solution to mee these goals. Shitting the horizontal alignment to the outside or inside will create undesirable impacts such as additional right-of-way/easement acquisitions, and polential median width reductions or eliminations and, in turn, leading to decreated safey.

The ventical alignment for this project was developed with the intent ol holding the existing grade as much as possible. The curten design holds closely to the existing grade and provides foom for milling/overlaying operations and cross slope correction. Placing the roadway in a deep eut is not feasible given that it would require total pavement reconstruction through the corridor as well as triggering substantial ulility relocation impacts.

It should however he noted that at Route 7's intersection with Baron Cameron Ave a pattial interchange is to be constructed to replace what is currently an at-grade intersection. Initially the design proposed talking the EB latnes of Roule 7 over Baron Cameron Ave which would have created significame noise and visuat impacts to the surrounding communities/properties. This design has been modilied so that the EB Route 7 through lanes will now go beneath Baron Cameron Ave with only a minor increase in the elevation of the existing intersection. This redesign eliminates what could have been a considerable noise and visual impact. (William Dunn, NOVA Location \& Design)

Comment: Can the project support the use of low noise pavement in lieu of construction of noise walls or sound barriers?
Response: The Virginia Department ol Tramsportation is not authorized by the Federall Highway Administration to use "quiel pavement" at this lime as al form of noise mitigation. Upon completion of the Quiet Pavement Pilot Program and approval from FHWA, the use of "quict pavement" will be given additional consideration.

Comment: Can landscaping be utilized to act as a visual screen if visual screening is required? (Location \& Design to address)
Response: Latndscaping can be used as a visual screen if required. The landscaping monst be placed outside of the clear zone, must not decrease driver sight distance, and must not require additional right-ol-way. (William Dunn, NOVA Location \& Design)

Note: Please provide the name of each responder.

## Appendix G

Warranted, Feasible, and Reasonable Worksheets

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
13-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Community Name and/or CNE\#
Noise Abatement Category(s)
Fairfax County

Design phase:

| A1 |
| :--- |
| A |
| B |
| Preliminary design |

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 1 |
| :---: |
| 1 |
| $100 \%$ |
| Yes |
| NA |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )

| $22,626 \mathrm{SF}$ |
| :---: |
| 1 |
| 8 |
| 9 |
| $2,514 \mathrm{SF} / \mathrm{BR}$ |
| No |
| No |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $1,257 \mathrm{ft}$ |
| :---: |
| $18-18 \mathrm{ft}$ |
| 18 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 701,406$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
13-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Fairfax County
Barrier System ID:
B1 - B5 and D1 System
Community Name and/or CNE\#
CNE B and CNE D
Noise Abatement Category(s)
$B$ and $C$
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $78,624 \mathrm{SF}$ |
| :---: |
| 18 |
| 41 |
| 59 |
| $1,333 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $5,616 \mathrm{ft}$ |
| :---: |
| $14-14 \mathrm{ft}$ |
| 14 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 2,437,344$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
C1-C4 System
Community Name and/or CNE\#

## CNE C

Noise Abatement Category(s)
B
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $113,238 \mathrm{SF}$ |
| :---: |
| 17 |
| 58 |
| 75 |
| $1,510 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $6,291 \mathrm{ft}$ |
| :---: |
| $18-18 \mathrm{ft}$ |
| 18 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 3,510,378$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

Community Name and/or CNE\#
D2

Noise Abatement Category(s)
CNE D
Design phase:
B
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 1 |
| :---: |
| 1 |
| $100 \%$ |
| Yes |
| NA |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $17,442 \mathrm{SF}$ |
| :---: |
| 1 |
| 1 |
| 2 |
| $8,721 \mathrm{SF} / \mathrm{BR}$ |
| No |
| No |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| 969 ft |
| :---: |
| $18-18 \mathrm{ft}$ |
| 18 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 540,702$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
E1-E3 System
Community Name and/or CNE\#

## CNE E

Noise Abatement Category(s)
B
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $50,078 \mathrm{SF}$ |
| :---: |
| 15 |
| 20 |
| 35 |
| $1,431 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $3,577 \mathrm{ft}$ |
| :---: |
| $14-14 \mathrm{ft}$ |
| 14 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 1,552,418$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
13-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
F1 - F3 System
Community Name and/or CNE\#
CNE F
Noise Abatement Category(s)
B \& C
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 23 |
| :---: |
| 20 |
| $87 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| NA |
| :---: |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $43,644 \mathrm{SF}$ |
| :---: |
| 20 |
| 15 |
| 35 |
| $1,247 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $3,637 \mathrm{ft}$ |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 1,352,964$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
30-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
F4 - F9 System
Community Name and/or CNE\#
CNE F
Noise Abatement Category(s)
B \& C
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $96,280 \mathrm{SF}$ |
| :---: |
| 22 |
| 52 |
| 74 |
| $1,301 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $4,814 \mathrm{ft}$ |
| :---: |
| $20-20 \mathrm{ft}$ |
| 20 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 2,984,680$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Fairfax County
Barrier System ID:
G1-G7
Community Name and/or CNE\#
CNE G
Noise Abatement Category(s)
B
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 18 |
| :---: |
| 17 |
| $94 \%$ |
| Yes |
| NA |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $65,736 \mathrm{SF}$ |
| :---: |
| 17 |
| 42 |
| 59 |
| $1,114 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

## 2 Additional Noise Barrier Details

a. Length of the proposed noise barrier. (ft)

| $5,478 \mathrm{ft}$ |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 2,037,816$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

G8 - G9 System
Community Name and/or CNE\#
CNE G
Noise Abatement Category(s)
C
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $20,513 \mathrm{SF}$ |
| :---: |
| 9 |
| 5 |
| 14 |
| $1,465 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $1,643 \mathrm{ft}$ |
| :---: |
| $10-14 \mathrm{ft}$ |
| 13 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 635,903$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Fairfax County
Barrier System ID:
G10-G16 System
Community Name and/or CNE\#
CNE G
Noise Abatement Category(s)
B \& C
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 21 |
| :---: |
| 19 |
| $90 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| No |
| :---: |
| No |
| No |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $39,250 \mathrm{SF}$ |
| :---: |
| 19 |
| 3 |
| 22 |
| $1,784 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $3,690 \mathrm{ft}$ |
| :---: |
| $10-12 \mathrm{ft}$ |
| 11 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 1,216,750$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
6-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
G10-G13 System
Community Name and/or CNE\#
CNE G
Noise Abatement Category(s)
B
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?


## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $28,185 \mathrm{SF}$ |
| :---: |
| 16 |
| 2 |
| 18 |
| $1,566 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $2,661 \mathrm{ft}$ |
| :---: |
| $10-12 \mathrm{ft}$ |
| 11 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 873,735$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
6-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

G14-G16 System
Community Name and/or CNE\#
CNE G
Noise Abatement Category(s)
B and C
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 3 |
| :---: |
| 2 |
| $67 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| NA |
| :---: |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )

| $11,080 \mathrm{SF}$ |
| :---: |
| 2 |
| 1 |
| 3 |
| $3,693 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $1,108 \mathrm{ft}$ |
| :---: |
| $10-10 \mathrm{ft}$ |
| 10 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 343,480$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
26-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328

District:
Fairfax County
Barrier System ID:
Community Name and/or CNE\#
H1 - H2 System
Noise Abatement Category(s)
CNE H
Design phase:
B
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 3 |
| :---: |
| 3 |
| $100 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| No |
| :---: |
| No |
| No |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $7,380 \mathrm{SF}$ |
| :---: |
| 3 |
| 0 |
| 3 |
| $2,460 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. ( ft )
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| 738 ft |
| :---: |
| $10-10 \mathrm{ft}$ |
| 10 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 228,780$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
26-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Fairfax County
Barrier System ID:
Community Name and/or CNE\#
H3-H11 System

Noise Abatement Category(s)
CNE H

Design phase:
$B$ and $C$
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?


## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 19 |
| :---: |
| 18 |
| $95 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| No |
| :---: |
| No |
| No |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $40,896 \mathrm{SF}$ |
| :---: |
| 18 |
| 19 |
| 37 |
| $1,105 \mathrm{SF} / \mathrm{BR}$ |
| Yes |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)

| $3,408 \mathrm{ft}$ |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 1,267,776$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
13-Sep-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
I1-I6, J1 - J4 and K1 - K3 System
Community Name and/or CNE\#
CNE I, J and K
Noise Abatement Category(s)
B \& C
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:

| 26 |
| :---: |
| 25 |
| $96 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| No |
| :---: |
| No |
| No |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )

87,388 SF
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| Yes |
| :---: |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| Yes |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

Community Name and/or CNE\#
L1 - L9 System
Noise Abatement Category(s)
CNE L
Design phase:
B
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

| Feasibility |  |
| :---: | :---: |
| 1 Impacted receptor units |  |
| a. Number of impacted receptor units: | 8 |
| b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL): | 6 |
| c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL | 75\% |
| d. Is the percentage 50 or greater? | Yes |
| 2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues? | NA |
| 3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel? | NA |
| 4 Will placement of the noise barrier conflict with existing utility locations? | NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )

| $21,810 \mathrm{SF}$ |
| :---: |
| 6 |
| 0 |
| 6 |
| $3,635 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $2,181 \mathrm{ft}$ |
| :---: |
| $10-10 \mathrm{ft}$ |
| 10 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 676,110$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County
L6 - L9 System
Community Name and/or CNE\#
CNE L
Noise Abatement Category(s)
B
Design phase:
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 4 |
| :---: |
| 4 |
| $100 \%$ |
| Yes |
| NA |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )

| $10,644 \mathrm{SF}$ |
| :---: |
| 4 |
| 0 |
| 4 |
| $2,661 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| 887 ft |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 329,964$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

Community Name and/or CNE\#
M1

Noise Abatement Category(s)
CNE M
Design phase:
B
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 1 |
| :---: |
| $100 \%$ |
| Yes |

2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues?

3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel?
4 Will placement of the noise barrier conflict with existing utility locations?

| No |
| :---: |
| No |
| No |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $6,360 \mathrm{SF}$ |
| :---: |
| 1 |
|  |
| 1 |
| $6,360 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| 530 ft |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 197,160$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

Community Name and/or CNE\#
Noise Abatement Category(s)
N1 - N3 System

Design phase:

## B

Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).

| NA |
| :---: |
| NA |

c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

| Feasibility |  |
| :---: | :---: |
| 1 Impacted receptor units |  |
| a. Number of impacted receptor units: | 3 |
| b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL): | 3 |
| c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL | 100\% |
| d. Is the percentage 50 or greater? | Yes |
| 2 Will placement of the noise barrier cause engineering or safety conflicts, e.g drainage issues or site distance issues? | NA |
| 3 Will placement of the noise barrier restrict access to vehicular or pedestrian travel? | NA |
| 4 Will placement of the noise barrier conflict with existing utility locations? | NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A})$ IL or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )
f. Is (1e) less than or equal to the maximum square feet per benefited receptor (MaxSF/BR) value of 1600 ?
g. Does the barrier provide an IL of at least $7 \mathrm{~dB}(\mathrm{~A})$ for at least one impacted receptor in the design year?

| $14,080 \mathrm{SF}$ |
| :---: |
| 3 |
| 5 |
| 8 |
| $1,760 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

## 2 Additional Noise Barrier Details

a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| $1,408 \mathrm{ft}$ |
| :---: |
| $10-10 \mathrm{ft}$ |
| 10 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 436,480$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## VDOT Highway Traffic Noise Abatement Warranted, Feasible, and Reasonable Worksheet

Note: Not all questions apply depending on the design phase which may cause differing answers between preliminary and final design phase. Answers to the questions may change depending on the design phase of the project.

Date:
Project No. and UPC:
29-Aug-16
County:
0007-029-128, B610, C502, P102, R202; UPC\# 52328
District:
Barrier System ID:
Fairfax County

Community Name and/or CNE\#
N4

Noise Abatement Category(s)
CNE N

Design phase:
B
Preliminary design

## Warranted

1 Community Documentation (if applicable)
a. Date community was permitted. (Per 23CFR 772 this is the date the building permit was issued).
b. Date of approval for the Categorical Exclusion (CE), Record of Decision (ROD), or Finding of No Significant Impact (FONSI):
c. Does the date in 1.a precede the date in 1.b? If yes, proceed to Warranted Item 2. If no, consideration of noise abatement is not warranted. Proceed to "Decision" block and answer "no" to warranted question. As the reason for this decision, state that "Community was permitted after the date of approval of CE, ROD, or FONSI, as appropriate."

2 Criteria requiring consideration of noise abatement
a. Project causes design year noise levels to approach or exceed the Noise Abatement Criteria?

b. Project causes a substantial noise increase of $10 \mathrm{~dB}(\mathrm{~A})$ or more?

## Feasibility

1 Impacted receptor units
a. Number of impacted receptor units:
b. Number of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more insertion loss (IL):
c. Percentage of impacted receptor units receiving $5 \mathrm{~dB}(\mathrm{~A})$ or more IL
d. Is the percentage 50 or greater?

| 1 |
| :---: |
| 1 |
| $100 \%$ |
| Yes |
| NA |
| NA |
| NA |

## Reasonableness

1 Surface Area (Square foot)-Benefit Factors
a. Surface Area (Total square foot) of the proposed noise barrier. ( $\mathrm{ft}^{2}$ )
b. Impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
c. Non-impacted noise sensitive receptor(s) receiving $5 \mathrm{~dB}(\mathrm{~A}) \mathrm{IL}$ or more.
d. Total number of benefited receptors.
e. Surface Area per benefited receptor unit. ( $\mathrm{ft}^{2} / \mathrm{BR}$ )

| $3,480 \mathrm{SF}$ |
| :---: |
| 1 |
| 0 |
| 1 |
| $3,480 \mathrm{SF} / \mathrm{BR}$ |
| No |
| Yes |

2 Additional Noise Barrier Details
a. Length of the proposed noise barrier. (ft)
b. Height range of the proposed noise barrier. (ft)
c. Average height of the proposed noise barrier. (ft)
d. Cost per square foot. $\left(\$ / \mathrm{ft}^{2}\right)$
e. Total Barrier Cost (\$)
f. Barrier Material

| 290 ft |
| :---: |
| $12-12 \mathrm{ft}$ |
| 12 ft |
| $\$ 31 / \mathrm{SF}$ |
| $\$ 107,880$ |
| Absorptive |

3 Community Desires Related to the Barrier
Do at least 50 percent of the benefited receptor unit owner(s) and renters desire the noise barrier? If yes, continue to "decision" block. If no, the barrier can be considered not to be reasonable. Proceed to "decision" block and answer "no" to reasonableness question. As the reason for this decision, state that "The majority of the impacted receptor unit owners do not desire the barrier."

## Decision

Is the Noise Barrier(s) WARRANTED?
Is the Noise Barrier(s) FEASIBLE?
Is the Noise Barrier(s) REASONABLE?

| Yes |
| :---: |
| Yes |
| No |

Additional Reasons for Decision:

## ApPENDIX H <br> Sound Levels Table




| CNE | Receptor Site | Site Representation | Criteria* | Existing 2015 | $2040$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CNE B | B50 | 1 Residential | 66 | 57 | 64 |
|  | B51 | 2 Residential | 66 | 51 | 57 |
|  | B52 | 1 Residential | 66 | 55 | 62 |
|  | B53 | 1 Residential | 66 | 58 | 65 |
|  | B54 | 1 Residential | 66 | 62 | 68 |
|  | B55 | 2 Residential | 66 | 52 | 58 |
|  | B56 | 1 Residential | 66 | 67 | 72 |
|  | B57 | 1 Residential | 66 | 50 | 56 |
|  | B58 | 2 Residential | 66 | 53 | 60 |
|  | B59 | 1 Residential | 66 | 56 | 63 |
|  | B60 | 1 Residential | 66 | 58 | 65 |
| CNE C | C1 | 1 Residential | 66 | 48 | 57 |
|  | C2 | 1 Residential | 66 | 51 | 57 |
|  | C3 | 2 Residential | 66 | 48 | 53 |
|  | C4 | 1 Residential | 66 | 53 | 58 |
|  | C5 | 1 Residential | 66 | 59 | 63 |
|  | C6 | 2 Residential | 66 | 49 | 54 |
|  | C7 | 1 Residential | 66 | 58 | 61 |
|  | C8 | 3 Residential | 66 | 57 | 60 |
|  | C9 | 1 Residential | 66 | 60 | 63 |
|  | C10 | 1 Residential | 66 | 64 | 66 |
|  | C11 | 1 Residential | 66 | 64 | 64 |
|  | C12 | 1 Residential | 66 | 45 | 48 |
|  | C13 | 2 Residential | 66 | 49 | 53 |
|  | C14 | 2 Residential | 66 | 54 | 57 |
|  | C15 | 1 Residential | 66 | 64 | 66 |
|  | C16 | 4 Residential | 66 | 48 | 52 |
|  | C17 | 1 Residential | 66 | 50 | 53 |
|  | C18 | 1 Residential | 66 | 65 | 69 |
|  | C19 | 1 Residential | 66 | 54 | 57 |
|  | C20 | 1 Residential | 66 | 55 | 59 |
|  | C21 | 1 Residential | 66 | 60 | 64 |
|  | C22 | 1 Residential | 66 | 57 | 61 |
|  | C23 | 1 Residential | 66 | 53 | 57 |
|  | C24 | 1 Residential | 66 | 50 | 53 |
|  | C25 | 1 Residential | 66 | 55 | 58 |
|  | C26 | 1 Residential | 66 | 62 | 66 |
|  | C27 | 1 Residential | 66 | 51 | 54 |
|  | C28 | 1 Residential | 66 | 64 | 68 |
|  | C29 | 1 Residential | 66 | 49 | 53 |
|  | C30 | 1 Residential | 66 | 58 | 61 |
|  | C31 | 1 Residential | 66 | 51 | 54 |
|  | C32 | 1 Residential | 66 | 55 | 58 |
|  | C33 | 2 Residential | 66 | 47 | 51 |
|  | C34 | 1 Residential | 66 | 67 | 68 |
|  | C35 | 1 Residential | 66 | 65 | 67 |
|  | C36 | 3 Residential | 66 | 53 | 56 |

CNE C


| Criteria* | Existing 2015 | Future Build $2040$ |
| :---: | :---: | :---: |
| 66 | 60 | 62 |
| 66 | 56 | 59 |
| 66 | 59 | 62 |
| 66 | 56 | 57 |
| 66 | 53 | 55 |
| 66 | 64 | 64 |
| 66 | 55 | 56 |
| 66 | 64 | 68 |
| 66 | 54 | 57 |
| 66 | 60 | 62 |
| 66 | 58 | 62 |
| 66 | 51 | 54 |
| 66 | 61 | 65 |
| 66 | 51 | 54 |
| 66 | 53 | 56 |
| 66 | 63 | 67 |
| 66 | 50 | 53 |
| 66 | 55 | 59 |
| 66 | 49 | 53 |
| 66 | 65 | 71 |
| 66 | 50 | 55 |
| 66 | 58 | 61 |
| 66 | 64 | 67 |
| 66 | 48 | 52 |
| 66 | 62 | 65 |
| 66 | 58 | 62 |
| 66 | 58 | 63 |
| 66 | 58 | 62 |
| 66 | 48 | 52 |
| 66 | 58 | 63 |
| 66 | 66 | 70 |
| 66 | 68 | 70 |
| 66 | 61 | 66 |
| 66 | 56 | 58 |
| 66 | 65 | 67 |
| 66 | 51 | 55 |
| 66 | 57 | 59 |
| 66 | 50 | 54 |
| 66 | 65 | 67 |
| 66 | 65 | 67 |
| 66 | 51 | 54 |
| 66 | 52 | 55 |
| 66 | 52 | 56 |
| 66 | 52 | 56 |
| 66 | 54 | 57 |
| 51 | 28 | 31 |
| 66 | 53 | 56 |
| 66 | 57 | 59 |


| CNE |  | 2 | 3 | 4 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build 2040 |
| CNE C | C85 | 1 Basketball Court | 66 | 57 | 59 |
|  | C86 | 1 Pienic Area | 66 | 62 | 64 |
|  |  |  |  |  |  |
| CNE D | D1 | 1 Soccer Field | 66 | 54 | 59 |
|  | D2 | 1 Soccer Field | 66 | 53 | 60 |
|  | D3 | 1 Soccer Field | 66 | 56 | 62 |
|  | D4 | 1 Soccer Field | 66 | 58 | 65 |
|  | D5 | 1 Soccer Field | 66 | 62 | 69 |
|  | D6 | 1 Soccer Field | 66 | 52 | 57 |
|  | D7 | 1 Soccer Field | 66 | 51 | 56 |
|  | D8 | 1 Soccer Field | 66 | 49 | 55 |
|  | D9 | 1 Soccer Field | 66 | 52 | 58 |
|  | D10 | 1 Soccer Field | 66 | 54 | 60 |
|  | D11 | 1 Soccer Field | 66 | 55 | 61 |
|  | D12 | 1 Soccer Field | 66 | 57 | 63 |
|  | D13 | 1 Soccer Field | 66 | 60 | 66 |
|  | D14 | 1 Soccer Field | 66 | 51 | 57 |
|  | D15 | 1 Soccer Field | 66 | 50 | 56 |
|  | D16 | 1 Soccer Field | 66 | 49 | 54 |
|  | D17 | 1 Soccer Field | 66 | 52 | 57 |
|  | D18 | 1 Soccer Field | 66 | 53 | 59 |
|  | D19 | 1 Soccer Field | 66 | 53 | 60 |
|  | D20 | 1 Soccer Field | 66 | 55 | 62 |
|  | D21 | 1 Soccer Field | 66 | 57 | 64 |
|  | D22 | 1 Soccer Field | 66 | 51 | 56 |
|  | D23 | 1 Soccer Field | 66 | 50 | 55 |
|  | D24 | 1 Soccer Field | 66 | 49 | 54 |
|  | D25 | 1 Softball Field | 66 | 54 | 61 |
|  | D26 | 1 Softball Field | 66 | 56 | 63 |
|  | D27 | 1 Softball Field | 66 | 53 | 59 |
|  | D28 | 1 Softball Field | 66 | 54 | 60 |
|  | D29 | 1 Softball Field | 66 | 55 | 62 |
|  | D30 | 1 Softball Field | 66 | 53 | 59 |
|  | D31 | 1 Residential | 66 | 53 | 59 |
|  | D32 | 1 Residential | 66 | 60 | 66 |
|  | D33 | 1 Residential | 66 | 62 | 65 |
|  | D34 | 1 Residential | 66 | 53 | 58 |
|  | D35 | 1 Residential | 66 | 51 | 56 |
|  | D36 | 1 Residential | 66 | 51 | 56 |
|  | D37 | 1 Residential | 66 | 53 | 58 |
|  |  |  |  |  |  |
| CNE E | E1 | 1 Residential | 66 | 60 | 63 |
|  | E2 | 1 Residential | 66 | 55 | 60 |
|  | E3 | 1 Residential | 66 | 52 | 57 |
|  | E4 | 1 Residential | 66 | 59 | 64 |
|  | E5 | 1 Residential | 66 | 62 | 66 |
|  | E6 | 1 Residential | 66 | 64 | 66 |
|  | E7 | 1 Residential | 66 | 61 | 64 |


| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build $2040$ |
| CNE E | E8 | 2 Residential | 66 | 53 | 57 |
|  | E9 | 2 Residential | 66 | 50 | 54 |
|  | E10 | 1 Residential | 66 | 49 | 54 |
|  | E11 | 1 Residential | 66 | 62 | 67 |
|  | E12 | 1 Residential | 66 | 66 | 70 |
|  | E13 | 1 Residential | 66 | 54 | 59 |
|  | E14 | 1 Residential | 66 | 58 | 63 |
|  | E15 | 1 Residential | 66 | 60 | 66 |
|  | E16 | 1 Residential | 66 | 55 | 60 |
|  | E17 | 1 Residential | 66 | 50 | 54 |
|  | E18 | 1 Residential | 66 | 61 | 67 |
|  | E19 | 1 Residential | 66 | 56 | 61 |
|  | E20 | 1 Residential | 66 | 59 | 65 |
|  | E21 | 1 Residential | 66 | 68 | 73 |
|  | E22 | 2 Residential | 66 | 48 | 53 |
|  | E23 | 1 Residential | 66 | 55 | 62 |
|  | E24 | 2 Residential | 66 | 51 | 56 |
|  | E25 | 3 Residential | 66 | 52 | 58 |
|  | E26 | 2 Residential | 66 | 70 | 74 |
|  | E27 | 2 Residential | 66 | 52 | 57 |
|  | E28 | 1 Residential | 66 | 53 | 59 |
|  | E29 | 1 Residential | 66 | 56 | 63 |
|  | E30 | 1 Residential | 66 | 51 | 57 |
|  | E31 | 1 Residential | 66 | 52 | 59 |
|  | E32 | 1 Residential | 66 | 55 | 61 |
|  | E33 | 1 Residential | 66 | 49 | 55 |
|  | E34 | 1 Residential | 66 | 63 | 69 |
|  | E35 | 1 Residential | 66 | 53 | 60 |
|  | E36 | 1 Residential | 66 | 48 | 54 |
|  | E37 | 1 Residential | 66 | 54 | 60 |
|  | E38 | 2 Residential | 66 | 50 | 56 |
|  | E39 | 1 Residential | 66 | 68 | 72 |
|  | E40 | 1 Residential | 66 | 69 | 74 |
|  | E41 | 1 Residential | 66 | 61 | 65 |
|  | E42 | 1 Residential | 66 | 62 | 68 |
|  | E43 | 2 Residential | 66 | 53 | 58 |
|  | E44 | 1 Residential | 66 | 66 | 72 |
|  | E45 | 1 Residential | 66 | 51 | 56 |
|  | E46 | 2 Residential | 66 | 56 | 62 |
|  | E47 | 1 Residential | 66 | 61 | 67 |
|  | E48 | 1 Residential | 66 | 62 | 67 |
|  | E49 | 2 Residential | 66 | 48 | 54 |
|  | E50 | 1 Residential | 66 | 55 | 62 |
|  | E51 | 2 Residential | 66 | 53 | 58 |
|  | E52 | 2 Residential | 66 | 50 | 58 |
|  |  |  |  |  |  |
| CNE F | CCT7 | 1 Existing Trail (Being relocated) | 66 | 70 | - |
|  | CCT8 | 1 Existing Trail (Being relocated) | 66 | 71 | - |


| CNE | Receptor Site | Site Representation | Criteria* | Existing 2015 | $2040$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CNE F | CCT9 | 1 Existing Trail (Being relocated) | 66 | 68 | - |
|  | CCT10 | 1 Existing Trail (Being relocated) | 66 | 64 | - |
|  | CCT11 | 1 Existing Trail (Being relocated) | 66 | 62 | - |
|  | CCT12 | 1 Existing Trail (Being relocated) | 66 | 60 | - |
|  | CCT13 | 1 Existing Trail (Being relocated) | 66 | 59 | - |
|  | CCT14 | 1 Existing Trail (Being relocated) | 66 | 59 | - |
|  | CCT15 | 1 Existing Trail (Being relocated) | 66 | 58 | - |
|  | CCT16 | 1 Existing Trail (Being relocated) | 66 | 57 | - |
|  | CCT17 | 1 Existing Trail (Being relocated) | 66 | 57 | - |
|  | CCT18 | 1 Existing Trail (Being relocated) | 66 | 56 | - |
|  | CCTB16 | 1 Proposed Trail Unit | 66 | - | 72 |
|  | CCTB17 | 1 Proposed Trail Unit | 66 | - | 66 |
|  | CCTB18 | 1 Proposed Trail Unit | 66 | - | 64 |
|  | CCTB19 | 1 Proposed Trail Unit | 66 | - | 63 |
|  | CCTB20 | 1 Proposed Trail Unit | 66 | - | 62 |
|  | CCTB21 | 1 Proposed Trail Unit | 66 | - | 63 |
|  | CCTB22 | 1 Proposed Trail Unit | 66 | - | 62 |
|  | CCTB23 | 1 Proposed Trail Unit | 66 | - | 62 |
|  | F1 | 1 Commercial | 71 | 64 | 67 |
|  | F2 | 1 Residential | 66 | 52 | 57 |
|  | F3 | 1 Residential | 66 | 53 | 58 |
|  | F4 | 1 Residential | 66 | 47 | 53 |
|  | F5 | 1 Residential | 66 | 50 | 55 |
|  | F6 | 1 Residential | 66 | 52 | 57 |
|  | F7 | 1 Residential | 66 | 51 | 55 |
|  | F8 | 1 Residential | 66 | 52 | 57 |
|  | F9 | 1 Residential | 66 | 50 | 54 |
|  | F10 | 1 Residential | 66 | 53 | 59 |
|  | F11 | 1 Residential | 66 | 49 | 55 |
|  | F12 | 1 Residential | 66 | 52 | 58 |
|  | F13 | 1 Residential | 66 | 64 | 68 |
|  | F14 | 1 Cemetery | 66 | 70 | 74 |
|  | F15 | 1 Cemetery | 66 | 62 | 68 |
|  | F16 | 1 Cemetery | 66 | 57 | 63 |
|  | F17 | 1 Cemetery | 66 | 71 | 75 |
|  | F18 | 1 Cemetery | 66 | 63 | 69 |
|  | F19 | 1 Cemetery | 66 | 55 | 62 |
|  | F20 | 1 Residential | 66 | 52 | 57 |
|  | F21 | 1 Residential | 66 | 55 | 62 |
|  | F22 | 1 Residential | 66 | 49 | 55 |
|  | F23 | 2 Residential | 66 | 67 | 73 |
|  | F24 | 1 Residential | 66 | 47 | 55 |
|  | F25 | 1 Residential | 66 | 61 | 66 |
|  | F26 | 1 Residential | 66 | 57 | 63 |
|  | F27 | 1 Residential | 66 | 60 | 65 |
|  | F28 | 1 Residential | 66 | 50 | 57 |
|  | F29 | 1 Residential | 66 | 54 | 60 |
|  | F30 | 1 Residential | 66 | 52 | 57 |

CNE F

| Receptor Site |
| :---: |
| F31 |
| F32 |
| F33 |
| F34 |
| F35 |
| F36 |
| F37 |
| F38 |
| F39 |
| F40 |
| F41 |
| F42 |
| F43 |
| F44 |
| F45 |
| F46 |
| F47 |
| F48 |
| F49 |
| F50 |
| F51 |
| F52 |
| F53 |
| F54 |
| F55 |
| F56 |
| F57 |
| F58 |
| F59 |
| F60 |
| F61 |
| F62 |
| F63 |
| F64 |
| F65 |
| F66 |
| F67 |
| F68 |
| F69 |
| F70 |
| F71 |
| F72 |
| F73 |
| F74 |
| F75 |
| F76 |
| F77 |
| F78 |

 Criteria* | 4 | 5 |
| :---: | :---: |
| Existing 2015 | $\begin{array}{c}\text { Future Build } \\ 2040\end{array}$ |

| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build $2040$ |
| CNE F | F79 | 1 Residential | 66 | 61 | 66 |
|  | F80 | 1 Residential | 66 | 64 | 68 |
|  | F81 | 1 Residential | 66 | 63 | 67 |
|  | F82 | 1 Residential | 66 | 56 | 61 |
|  | F83 | 1 Residential | 66 | 53 | 59 |
|  | F84 | 1 Residential | 66 | 55 | 61 |
|  | F85 | 1 Residential | 66 | 62 | 66 |
|  | F86 | 1 Residential | 66 | 63 | 67 |
|  | F87 | 1 Residential | 66 | 58 | 63 |
|  | F88 | 1 Residential | 66 | 65 | 69 |
|  | F89 | 1 Residential | 66 | 57 | 62 |
|  | F90 | 1 Residential | 66 | 70 | 73 |
|  | F91 | 1 Residential | 66 | 57 | 62 |
|  | F92 | 1 Residential | 66 | 56 | 61 |
|  | F93 | 1 Residential | 66 | 57 | 62 |
|  | F94 | 1 Residential | 66 | 68 | 71 |
|  | F95 | 1 Residential | 66 | 54 | 61 |
|  | F96 | 1 Residential | 66 | 48 | 55 |
|  | F97 | 1 Residential | 66 | 54 | 61 |
|  | F98 | 1 Residential | 66 | 52 | 58 |
|  | F99 | 1 Residential | 66 | 51 | 58 |
|  | F100 | 1 Residential | 66 | 53 | 60 |
|  | F101 | 1 Residential | 66 | 50 | 57 |
|  | F102 | 1 Residential | 66 | 51 | 58 |
|  | F103 | 2 Residential | 66 | 66 | 70 |
|  | F104 | 1 Residential | 66 | 50 | 57 |
|  | F105 | 1 Residential | 66 | 68 | 74 |
|  | F106 | 1 Residential | 66 | 50 | 56 |
|  | F107 | 1 Residential | 66 | 50 | 57 |
|  | F108 | 1 Residential | 66 | 53 | 60 |
|  | F109 | 1 Residential | 66 | 55 | 63 |
|  | F110 | 1 Residential | 66 | 48 | 55 |
|  | F111 | 1 Residential | 66 | 49 | 57 |
|  | F112 | 1 Residential | 66 | 61 | 67 |
|  | F113 | 1 Residential | 66 | 50 | 57 |
|  | F114 | 1 Residential | 66 | 51 | 58 |
|  | F115 | 1 Residential | 66 | 52 | 59 |
|  | F116 | 1 Residential | 66 | 61 | 67 |
|  | F117 | 1 Residential | 66 | 54 | 61 |
|  | F118 | 1 Residential | 66 | 50 | 56 |
|  | F119 | 1 Residential | 66 | 51 | 58 |
|  | F120 | 1 Residential | 66 | 53 | 60 |
|  | F121 | 1 Residential | 66 | 55 | 61 |
|  | F122 | 1 Residential | 66 | 52 | 59 |
|  | F123 | 1 Residential | 66 | 56 | 62 |
|  | F124 | 1 Residential | 66 | 50 | 56 |
|  | F125 | 1 Residential | 66 | 55 | 60 |
|  | F126 | 1 Residential | 66 | 52 | 58 |


| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build $2040$ |
| CNE F | F127 | 1 Residential | 66 | 53 | 60 |
|  | F128 | 1 Residential | 66 | 63 | 67 |
|  | F129 | 1 Residential | 66 | 51 | 57 |
|  | F130 | 1 Residential | 66 | 53 | 60 |
|  | F131 | 2 Residential | 66 | 50 | 56 |
|  | F132 | 2 Residential | 66 | 52 | 58 |
|  | F133 | 2 Residential | 66 | 53 | 59 |
|  | F134 | 3 Residential | 66 | 50 | 57 |
|  | F135 | 2 Residential | 66 | 50 | 57 |
|  | F136 | 2 Residential | 66 | 49 | 55 |
|  | F137 | 1 Residential | 66 | 53 | 59 |
|  | F138 | 2 Residential | 66 | 49 | 56 |
|  | F139 | 1 Residential | 66 | 51 | 57 |
|  | F140 | 2 Residential | 66 | 48 | 55 |
|  | F141 | 1 Historic Site | 66 | 63 | 68 |
|  |  |  |  |  |  |
| CNE G | CCT1 | 1 Existing Trail (Being relocated) | 66 | 56 | - |
|  | CCT2 | 1 Existing Trail (Being relocated) | 66 | 57 | - |
|  | CCT3 | 1 Existing Trail (Being relocated) | 66 | 59 | - |
|  | CCT4 | 1 Existing Trail (Being relocated) | 66 | 60 | - |
|  | CCT5 | 1 Existing Trail (Being relocated) | 66 | 60 | - |
|  | CCT6 | 1 Existing Trail (Being relocated) | 66 | 64 | - |
|  | CCTB1 | 1 Proposed Trail Unit | 66 | - | 64 |
|  | CCTB2 | 1 Proposed Trail Unit | 66 | - | 65 |
|  | CCTB3 | 1 Proposed Trail Unit | 66 | - | 66 |
|  | CCTB4 | 1 Proposed Trail Unit | 66 | - | 68 |
|  | CCTB5 | 1 Proposed Trail Unit | 66 | - | 71 |
|  | CCTB6 | 1 Proposed Trail Unit | 66 | - | 75 |
|  | CCTB7 | 1 Proposed Trail Unit | 66 | - | 71 |
|  | CCTB8 | 1 Proposed Trail Unit | 66 | - | 71 |
|  | CCTB9 | 1 Proposed Trail Unit | 66 | - | 71 |
|  | CCTB10 | 1 Proposed Trail Unit | 66 | - | 70 |
|  | CCTB11 | 1 Proposed Trail Unit | 66 | - | 70 |
|  | CCTB12 | 1 Proposed Trail Unit | 66 | - | 69 |
|  | CCTB13 | 1 Proposed Trail Unit | 66 | - | 69 |
|  | CCTB14 | 1 Proposed Trail Unit | 66 | - | 69 |
|  | CCTB15 | 1 Proposed Trail Unit | 66 | - | 69 |
|  | LT1 | 1 Existing Trail (Not being relocated) | 66 | 56 | 59 |
|  | LT2 | 1 Existing Trail (Not being relocated) | 66 | 57 | 60 |
|  | LT3 | 1 Existing Trail (Not being relocated) | 66 | 59 | 61 |
|  | LT4 | 1 Existing Trail (Not being relocated) | 66 | 60 | 63 |
|  | LT5 | 1 Existing Trail (Not being relocated) | 66 | 62 | 64 |
|  | LT6 | 1 Existing Trail (Not being relocated) | 66 | 62 | 65 |
|  | LT7 | 1 Existing Trail (Not being relocated) | 66 | 61 | 65 |
|  | G1 | 1 Residential | 66 | 50 | 62 |
|  | G2 | 1 Residential | 66 | 49 | 54 |
|  | G3 | 1 Residential | 66 | 52 | 63 |
|  | G4 | 1 Residential | 66 | 52 | 57 |


| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build $2040$ |
| CNE G | G5 | 1 Residential | 66 | 60 | 61 |
|  | G6 | 1 Residential | 66 | 48 | 52 |
|  | G7 | 1 Residential | 66 | 55 | 55 |
|  | G8 | 1 Residential | 66 | 47 | 51 |
|  | G9 | 1 Residential | 66 | 52 | 53 |
|  | G10 | 1 Residential | 66 | 47 | 50 |
|  | G11 | 1 Residential | 66 | 65 | 64 |
|  | G12 | 1 Residential | 66 | 48 | 51 |
|  | G13 | 1 Residential | 66 | 47 | 50 |
|  | G14 | 1 Residential | 66 | 48 | 51 |
|  | G15 | 1 Residential | 66 | 49 | 53 |
|  | G16 | 1 Residential | 66 | 66 | 69 |
|  | G17 | 1 Residential | 66 | 56 | 59 |
|  | G18 | 2 Residential | 66 | 51 | 56 |
|  | G19 | 1 Residential | 66 | 53 | 57 |
|  | G20 | 1 Residential | 66 | 66 | 70 |
|  | G21 | 1 Residential | 66 | 63 | 68 |
|  | G22 | 1 Residential | 66 | 55 | 60 |
|  | G23 | 1 Residential | 66 | 63 | 68 |
|  | G24 | 1 Residential | 66 | 57 | 61 |
|  | G25 | 1 Residential | 66 | 55 | 60 |
|  | G26 | 1 Residential | 66 | 63 | 68 |
|  | G27 | 1 Residential | 66 | 55 | 59 |
|  | G28 | 1 Residential | 66 | 62 | 67 |
|  | G29 | 1 Residential | 66 | 57 | 59 |
|  | G30 | 1 Residential | 66 | 63 | 67 |
|  | G31 | 1 Residential | 66 | 57 | 59 |
|  | G32 | 1 Residential | 66 | 59 | 60 |
|  | G33 | 1 Residential | 66 | 60 | 60 |
|  | G34 | 1 Residential | 66 | 56 | 58 |
|  | G35 | 1 Residential | 66 | 56 | 57 |
|  | G36 | 1 Residential | 66 | 61 | 61 |
|  | G37 | 1 Residential | 66 | 61 | 61 |
|  | G38 | 1 Residential | 66 | 56 | 58 |
|  | G39 | 1 Residential | 66 | 54 | 57 |
|  | G40 | 1 Residential | 66 | 60 | 61 |
|  | G41 | 1 Residential | 66 | 51 | 54 |
|  | G42 | 1 Residential | 66 | 60 | 63 |
|  | G43 | 1 Residential | 66 | 55 | 59 |
|  | G44 | 1 Residential | 66 | 59 | 64 |
|  | G45 | 1 Residential | 66 | 52 | 56 |
|  | G46 | 1 Residential | 66 | 48 | 53 |
|  | G47 | 1 Residential | 66 | 56 | 63 |
|  | G48 | 1 Residential | 66 | 57 | 70 |
|  | G49 | 2 Residential | 66 | 54 | 61 |
|  | G50 | 1 Residential | 66 | 50 | 55 |
|  | G51 | 1 Residential | 66 | 65 | 72 |
|  | G52 | 1 Residential | 66 | 57 | 62 |


| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build $2040$ |
| CNE G | G53 | 1 Residential | 66 | 52 | 58 |
|  | G54 | 1 Residential | 66 | 54 | 59 |
|  | G55 | 1 Residential | 66 | 67 | 73 |
|  | G56 | 1 Residential | 66 | 50 | 55 |
|  | G57 | 1 Residential | 66 | 57 | 62 |
|  | G58 | 1 Residential | 66 | 51 | 55 |
|  | G59 | 1 Residential | 66 | 67 | 72 |
|  | G60 | 1 Residential | 66 | 53 | 58 |
|  | G61 | 1 Residential | 66 | 67 | 72 |
|  | G62 | 1 Residential | 66 | 50 | 55 |
|  | G63 | 1 Residential | 66 | 51 | 56 |
|  | G64 | 1 Residential | 66 | 52 | 57 |
|  | G65 | 1 Residential | 66 | 58 | 63 |
|  | G66 | 1 Residential | 66 | 51 | 56 |
|  | G67 | 1 Residential | 66 | 56 | 61 |
|  | G68 | 1 Residential | 66 | 53 | 58 |
|  | G69 | 2 Residential | 66 | 54 | 60 |
|  | G70 | 1 Residential | 66 | 55 | 60 |
|  | G71 | 1 Residential | 66 | 64 | 69 |
|  | G72 | 1 Residential | 66 | 52 | 57 |
|  | G73 | 1 Church (Interior) | 51 | 32 | 38 |
|  | G75 | 1 Residential | 66 | 64 | 68 |
|  | G76 | 1 Residential | 66 | 63 | 67 |
|  | G77 | 1 Residential | 66 | 63 | 67 |
|  | G78 | 1 Residential | 66 | 59 | 64 |
|  | G79 | 1 Residential | 66 | 60 | 63 |
|  | G80 | 1 Residential | 66 | 55 | 59 |
|  | G81 | 1 Residential | 66 | 59 | 62 |
|  | G82 | 1 Residential | 66 | 57 | 60 |
|  | G83 | 1 Residential | 66 | 58 | 61 |
|  | G84 | 3 Residential | 66 | 52 | 57 |
|  | G85 | 2 Residential | 66 | 55 | 59 |
|  | G86 | 2 Residential | 66 | 53 | 57 |
|  | G87 | 1 Residential | 66 | 56 | 61 |
|  | G88 | 2 Residential | 66 | 65 | 71 |
|  | G89 | 1 Residential | 66 | 53 | 58 |
|  | G90 | 2 Residential | 66 | 58 | 63 |
|  | G91 | 1 Residential | 66 | 57 | 61 |
|  | G92 | 1 Residential | 66 | 56 | 61 |
|  | G93 | 1 Residential | 66 | 55 | 59 |
|  | G94 | 1 Residential | 66 | 56 | 60 |
|  | G95 | 1 Residential | 66 | 56 | 60 |
|  | G96 | 1 Residential | 66 | 56 | 60 |
|  | G97 | 1 Residential | 66 | 56 | 61 |
|  | G98 | 2 Residential | 66 | 55 | 59 |
|  | G99 | 2 Residential | 66 | 55 | 60 |
|  | G100 | 1 Residential | 66 | 56 | 61 |
|  | G101 | 1 Residential | 66 | 56 | 62 |



| CNE | Receptor Site | Site Representation | Criteria* | Existing 2015 | $2040$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CNE G | G150 | 1 Residential | 66 | 58 | 60 |
|  | G151 | 1 Residential | 66 | 66 | 69 |
|  | G152 | 1 Residential | 66 | 49 | 53 |
|  | G153 | 1 Residential | 66 | 52 | 56 |
|  | G154 | 1 Residential | 66 | 58 | 61 |
|  | G155 | 1 Residential | 66 | 68 | 72 |
|  | G156 | 1 Residential | 66 | 51 | 55 |
|  | G157 | 1 Residential | 66 | 57 | 60 |
|  | G158 | 1 Residential | 66 | 69 | 72 |
|  | G159 | 1 Residential | 66 | 60 | 64 |
|  | G160 | 1 Residential | 66 | 55 | 59 |
|  | G161 | 1 Residential | 66 | 68 | 72 |
|  | G162 | 1 Residential | 66 | 69 | 73 |
|  | G163 | 1 Residential | 66 | 59 | 63 |
|  | G164 | 1 Residential | 66 | 59 | 62 |
|  | G165 | 1 Residential | 66 | 69 | 73 |
|  | G166 | 1 Residential | 66 | 58 | 62 |
|  | G167 | 1 Residential | 66 | 69 | 73 |
|  | G168 | 1 Residential | 66 | 60 | 63 |
|  | G169 | 1 Residential | 66 | 66 | 70 |
|  | G170 | 1 Residential | 66 | 64 | 68 |
|  | G171 | 1 Preschool (Interior) | 51 | 31 | 36 |
|  | G172 | 1 Residential | 66 | 67 | 72 |
|  | G173 | 1 Residential | 66 | 50 | 56 |
|  | G174 | 1 Playground | 66 | 63 | 68 |
|  | G175 | 1 Residential | 66 | 55 | 60 |
|  | G176 | 1 Residential | 66 | 62 | 67 |
|  | G177 | 1 Dentist Office (Interior) | 51 | 46 | 49 |
| CNE H | H1 | 1 Residential | 66 | 64 | 72 |
|  | H2 | 1 Residential | 66 | 70 | 76 |
|  | H3 | 1 Residential | 66 | 66 | 72 |
|  | H4 | 1 Residential | 66 | 52 | 58 |
|  | H5 | 3 Residential | 66 | 52 | 60 |
|  | H6 | 1 Residential | 66 | 51 | 57 |
|  | H7 | 1 Residential | 66 | 53 | 60 |
|  | H8 | 1 Residential | 66 | 52 | 58 |
|  | H9 | 1 Residential | 66 | 53 | 59 |
|  | H10 | 1 Residential | 66 | 55 | 63 |
|  | H11 | 1 Residential | 66 | 53 | 59 |
|  | H12 | 2 Residential | 66 | 62 | 70 |
|  | H13 | 1 Residential | 66 | 54 | 59 |
|  | H14 | 1 Residential | 66 | 57 | 64 |
|  | H15 | 1 Residential | 66 | 66 | 70 |
|  | H16 | 1 Residential | 66 | 52 | 59 |
|  | H17 | 1 Residential | 66 | 56 | 62 |
|  | H18 | 1 Residential | 66 | 56 | 61 |
|  | H19 | 1 Residential | 66 | 60 | 63 |



| CNE | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | $\begin{gathered} \text { Future Build } \\ 2040 \end{gathered}$ |
| CNE I | 12 | 1 Residential | 66 | 51 | 56 |
|  | 13 | 1 Residential | 66 | 59 | 64 |
|  | 14 | 1 Residential | 66 | 53 | 56 |
|  | 15 | 1 Residential | 66 | 54 | 58 |
|  | 16 | 1 Nursery | 71 | 67 | 70 |
|  | 17 | 1 Residential | 66 | 55 | 59 |
|  | 18 | 2 Residential | 66 | 55 | 58 |
|  | 19 | 1 Residential | 66 | 60 | 67 |
|  | I10 | 1 Residential | 66 | 61 | 65 |
|  | I11 | 2 Residential | 66 | 56 | 61 |
|  | 112 | 1 Residential | 66 | 53 | 57 |
|  | 113 | 1 Residential | 66 | 60 | 64 |
|  | 114 | 1 Residential | 66 | 62 | 65 |
|  | 115 | 1 Residential | 66 | 57 | 61 |
|  | 116 | 1 Residential | 66 | 53 | 57 |
|  | 117 | 1 Residential | 66 | 55 | 59 |
|  | 118 | 1 Residential | 66 | 53 | 57 |
|  | 119 | 1 Residential | 66 | 64 | 67 |
|  | 120 | 1 Residential | 66 | 56 | 59 |
|  | 121 | 1 Residential | 66 | 61 | 64 |
|  | 122 | 1 Residential | 66 | 54 | 58 |
|  | 123 | 1 Residential | 66 | 67 | 68 |
|  | 124 | 1 Residential | 66 | 58 | 62 |
|  | 125 | 1 Residential | 66 | 52 | 56 |
|  | 126 | 2 Residential | 66 | 55 | 59 |
|  | 127 | 2 Residential | 66 | 53 | 58 |
|  | 128 | 2 Residential | 66 | 54 | 59 |
|  | 129 | 1 Residential | 66 | 57 | 62 |
|  | 130 | 1 Residential | 66 | 53 | 59 |
|  | 131 | 1 Residential | 66 | 57 | 62 |
|  | 132 | 1 Residential | 66 | 65 | 70 |
|  | 133 | 2 Residential | 66 | 57 | 62 |
|  | 134 | 2 Residential | 66 | 51 | 55 |
|  | 135 | 1 Residential | 66 | 66 | 71 |
|  | 136 | 1 Residential | 66 | 62 | 67 |
|  | 137 | 2 Residential | 66 | 52 | 56 |
|  | 138 | 1 Residential | 66 | 54 | 58 |
|  | 139 | 1 Residential | 66 | 55 | 61 |
|  | 140 | 1 Residential | 66 | 69 | 74 |
|  | 141 | 2 Residential | 66 | 52 | 58 |
|  | 142 | 3 Residential | 66 | 52 | 56 |
|  | 143 | 1 Residential | 66 | 63 | 68 |
|  | 144 | 2 Residential | 66 | 53 | 58 |
|  | 145 | 2 Residential | 66 | 55 | 60 |
|  | 146 | 2 Residential | 66 | 55 | 60 |
|  | 147 | 1 Residential | 66 | 57 | 67 |
|  | 148 | 2 Residential | 66 | 53 | 57 |
|  | 149 | 1 Residential | 66 | 58 | 64 |



| CNE |  | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | $\begin{gathered} \text { Future Build } \\ 2040 \end{gathered}$ |
| CNE J | J31 | 1 Church (Interior) | 51 | 45 | 47 |
| CNE K | K1 | 1 Residential | 66 | 65 | 67 |
|  | K2 | 1 Pre-school (Interior) | 66 | 37 | 37 |
|  | K3 | 1 Pre-school (Exterior) | 51 | 61 | 61 |
|  | K4 | 1 Residential | 66 | 67 | 66 |
|  | K5 | 1 Residential | 66 | 54 | 55 |
|  | K6 | 1 Residential | 66 | 55 | 55 |
|  | K7 | 1 Residential | 66 | 57 | 58 |
|  | K8 | 1 Church (Interior) | 66 | 39 | 42 |
|  | K9 | 1 Residential | 66 | 68 | 70 |
|  | K10 | 1 Residential | 66 | 61 | 64 |
|  | K11 | 1 Residential | 66 | 62 | 66 |
|  | K12 | 1 Residential | 51 | 60 | 63 |
|  | K13 | 1 Residential | 66 | 54 | 55 |
|  | K14 | 1 Residential | 66 | 48 | 50 |
|  | K15 | 1 Residential | 66 | 56 | 59 |
|  | K16 | 2 Residential | 66 | 57 | 59 |
|  | K17 | 1 Residential | 66 | 61 | 63 |
|  | K18 | 2 Residential | 66 | 56 | 59 |
|  | K19 | 1 Residential | 66 | 64 | 66 |
|  | K20 | 1 Residential | 66 | 57 | 59 |
|  | K21 | 1 Residential | 66 | 58 | 61 |
|  | K22 | 1 Residential | 66 | 60 | 62 |
|  | K23 | 1 Residential | 66 | 65 | 67 |
|  | K24 | 1 Non-Profit Organization (Exterior) | 66 | 58 | 59 |
|  | K25 | 1 Non-Profit Organization (Interior) | 66 | 42 | 43 |
|  | K26 | 1 Church (Interior) | 51 | 24 | 24 |
|  | K27 | 1 Church (Exterior) | 66 | 52 | 52 |
|  |  |  |  |  |  |
| CNE L | L1 | 1 Laboratory (Interior) | 51 | 38 | 43 |
|  | L2 | 1 Residential | 66 | 63 | 68 |
|  | L3 | 1 Residential | 66 | 65 | 69 |
|  | L4 | 1 Residential | 66 | 67 | 71 |
|  | L5 | 1 Residential | 66 | 66 | 70 |
|  | L6 | 1 Residential | 66 | 72 | 76 |
|  | L7 | 1 Residential | 66 | 59 | 63 |
|  | L8 | 1 Residential | 66 | 61 | 66 |
|  | L9 | 1 Residential | 66 | 68 | 72 |
|  | L10 | 1 Residential | 66 | 72 | 75 |
|  | L12 | 1 Church (Interior) | 51 | 38 | 40 |
|  | L13 | 1 Residential | 66 | 56 | 60 |
|  | L14 | 1 Residential | 66 | 55 | 59 |
|  | L15 | 1 Residential | 66 | 54 | 56 |
|  | L16 | 2 Residential | 66 | 56 | 59 |
|  | L18 | 1 Pre-school (Interior) | 51 | 35 | 38 |
|  | L19 | 1 Residential | 66 | 54 | 57 |
|  | L20 | 1 Residential | 66 | 57 | 60 |


| CNE |  | 2 | 3 | 4 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  |  |  |
|  | Receptor Site | Site Representation | Criteria* | Existing 2015 | Future Build 2040 |
| CNE L | L21 | 1 Residential | 66 | 51 | 54 |
|  | L22 | 1 Residential | 66 | 52 | 55 |
|  | L23 | 1 Residential | 66 | 55 | 60 |
|  | L24 | 1 Residential | 66 | 49 | 52 |
|  | L25 | 1 Residential | 66 | 50 | 54 |
|  | L26 | 1 Residential | 66 | 54 | 60 |
|  | L27 | 1 Residential | 66 | 49 | 53 |
|  | L28 | 1 Residential | 66 | 55 | 60 |
|  | L29 | 1 Residential | 66 | 54 | 60 |
|  | L30 | 1 Residential | 66 | 50 | 55 |
|  | L31 | 1 Residential | 66 | 49 | 53 |
|  | L32 | 1 Residential | 66 | 52 | 61 |
|  | L33 | 1 Residential | 66 | 51 | 56 |
|  | L34 | 1 Residential | 66 | 49 | 52 |
|  | L35 | 1 Residential | 66 | 48 | 51 |
|  |  |  |  |  |  |
| CNE M | M1 | Proposed Aqusition | N/A | N/A | N/A |
|  | M2 | 1 Residential | 66 | 64 | 67 |
|  | M3 | 1 Residential | 66 | 63 | 64 |
|  | M4 | 1 Residential | 66 | 57 | 62 |
|  | M5 | 1 Residential | 66 | 60 | 61 |
|  | M6 | 1 Residential | 66 | 61 | 62 |
|  | M7 | 1 Residential | 66 | 57 | 64 |
|  | M8 | 1 Residential | 66 | 62 | 62 |
|  | M9 | 1 Residential | 66 | 62 | 62 |
|  | M10 | 1 Residential | 66 | 57 | 62 |
|  | M11 | 1 Residential | 66 | 60 | 60 |
|  | M12 | 1 Residential | 66 | 59 | 59 |
|  | M13 | 1 Residential | 66 | 61 | 61 |
|  | M14 | 2 Residential | 66 | 57 | 59 |
|  | M15 | 1 Residential | 66 | 58 | 59 |
|  | M16 | 1 Residential | 66 | 59 | 60 |
|  | M17 | 1 Residential | 66 | 59 | 59 |
|  | M18 | 1 Residential | 66 | 57 | 58 |
|  | M19 | 1 Residential | 66 | 59 | 60 |
|  | M20 | 1 Residential | 66 | 59 | 59 |
|  | M21 | 2 Residential | 66 | 56 | 57 |
|  | M22 | 1 Residential | 66 | 58 | 58 |
|  | M23 | 1 Residential | 66 | 57 | 57 |
|  | M24 | 1 Residential | 66 | 57 | 57 |
|  | M25 | 1 Residential | 66 | 58 | 58 |
|  | M26 | 1 Residential | 66 | 58 | 60 |
|  | M27 | 1 Residential | 66 | 56 | 57 |
|  | M28 | 1 Residential | 66 | 56 | 57 |
|  | M29 | 1 Residential | 66 | 56 | 57 |
|  | M30 | 1 Residential | 66 | 58 | 60 |
|  | M31 | 1 Residential | 66 | 57 | 58 |
|  | M32 | 1 Residential | 66 | 59 | 61 |




Impacted Receptor

- Noise Levels not available forthis particular scenario


## Appendix I <br> Insertion Loss Table



| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \text { Abated (2040) } \\ \text { Noise Level } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Net Insertion } \\ \text { Loss } \end{array}$ |
| B and D | B1 - B5 and D1 System | B46 | 1 Residential | 64 | 57 | 6 |
|  |  | B47 | 1 Residential | 71 | 65 | 6 |
|  |  | B48 | 2 Residential | 58 | 53 | 6 |
|  |  | B49 | 1 Residential | 61 | 55 | 6 |
|  |  | B50 | 1 Residential | 64 | 58 | 5 |
|  |  | B51 | 2 Residential | 57 | 52 | 4 |
|  |  | B52 | 1 Residential | 62 | 56 | 5 |
|  |  | B53 | 1 Residential | 65 | 59 | 5 |
|  |  | B54 | 1 Residential | 68 | 61 | 7 |
|  |  | B55 | 2 Residential | 58 | 54 | 5 |
|  |  | B56 | 1 Residential | 72 | 63 | 8 |
|  |  | B57 | 1 Residential | 56 | 52 | 4 |
|  |  | B58 | 2 Residential | 60 | 55 | 5 |
|  |  | B59 | 1 Residential | 63 | 59 | 5 |
|  |  | B60 | 1 Residential | 65 | 60 | 5 |
|  |  | D1 | 1 Soccer Field | 59 | 55 | 4 |
|  |  | D2 | 1 Soccer Field | 60 | 55 | 5 |
|  |  | D3 | 1 Soccer Field | 62 | 57 | 4 |
|  |  | D4 | 1 Soccer Field | 65 | 61 | 4 |
|  |  | D5 | 1 Soccer Field | 69 | 64 | 5 |
|  |  | D6 | 1 Soccer Field | 57 | 53 | 4 |
|  |  | D7 | 1 Soccer Field | 56 | 52 | 4 |
|  |  | D8 | 1 Soccer Field | 55 | 51 | 4 |
|  |  | D9 | 1 Soccer Field | 58 | 54 | 4 |
|  |  | D10 | 1 Soccer Field | 60 | 56 | 4 |
|  |  | D11 | 1 Soccer Field | 61 | 57 | 4 |
|  |  | D12 | 1 Soccer Field | 63 | 59 | 5 |
|  |  | D13 | 1 Soccer Field | 66 | 60 | 6 |
|  |  | D14 | 1 Soccer Field | 57 | 53 | 4 |
|  |  | D15 | 1 Soccer Field | 56 | 52 | 4 |
|  |  | D16 | 1 Soccer Field | 54 | 51 | 3 |
|  |  | D17 | 1 Soccer Field | 57 | 53 | 4 |
|  |  | D18 | 1 Soccer Field | 59 | 55 | 4 |
|  |  | D19 | 1 Soccer Field | 60 | 56 | 5 |
|  |  | D20 | 1 Soccer Field | 62 | 57 | 5 |
|  |  | D21 | 1 Soccer Field | 64 | 58 | 6 |
|  |  | D22 | 1 Soccer Field | 56 | 52 | 4 |
|  |  | D23 | 1 Soccer Field | 55 | 51 | 4 |
|  |  | D24 | 1 Soccer Field | 54 | 50 | 4 |
|  |  | D26 | 1 Softball Field | 61 | 56 | 5 |
|  |  | D25 | 1 Softball Field | 63 | 58 | 6 |
|  |  | D27 | 1 Softball Field | 59 | 55 | 4 |
|  |  | D28 | 1 Softball Field | 60 | 56 | 4 |
|  |  | D29 | 1 Softball Field | 62 | 57 | 5 |
|  |  | D30 | 1 Softball Field | 59 | 56 | 4 |
| C | C1-C4 System | C1 | 1 Residential | 57 | 57 | 1 |
|  |  | C2 | 1 Residential | 57 | 56 | 1 |
|  |  | C3 | 2 Residential | 53 | 51 | 2 |
|  |  | C4 | 1 Residential | 58 | 56 | 2 |
|  |  | C5 | 1 Residential | 63 | 60 | 3 |
|  |  | C6 | 2 Residential | 54 | 49 | 4 |
|  |  | C7 | 1 Residential | 61 | 56 | 5 |
|  |  | C8 | 3 Residential | 60 | 52 | 8 |
|  |  | C9 | 1 Residential | 63 | 56 | 7 |
|  |  | C10 | 1 Residential | 66 | 55 | 11 |
|  |  | C11 | 1 Residential | 64 | 54 | 10 |
|  |  | C12 | 1 Residential | 48 | 44 | 3 |
|  |  | C13 | 2 Residential | 53 | 47 | 5 |
|  |  | C14 | 2 Residential | 57 | 49 | 8 |
|  |  | C15 | 1 Residential | 66 | 55 | 10 |
|  |  | C16 | 4 Residential | 52 | 47 | 5 |
|  |  | C17 | 1 Residential | 53 | 48 | 6 |
|  |  | C18 | 1 Residential | 69 | 55 | 14 |
|  |  | C19 | 1 Residential | 57 | 50 | 8 |
|  |  | C20 | 1 Residential | 59 | 51 | 8 |
|  |  | C21 | 1 Residential | 64 | 52 | 12 |
|  |  | C22 | 1 Residential | 61 | 53 | 8 |
|  |  | C23 | 1 Residential | 57 | 50 | 8 |
|  |  | C24 | 1 Residential | 53 | 48 | 6 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \text { Abated (2040) } \\ \text { Noise Level } \\ \hline \end{array}$ | Net Insertion Loss |
| C | C1-C4 System | C25 | 1 Residential | 58 | 51 | 7 |
|  |  | C26 | 1 Residential | 66 | 56 | 10 |
|  |  | C27 | 1 Residential | 54 | 48 | 6 |
|  |  | C28 | 1 Residential | 68 | 56 | 11 |
|  |  | C29 | 1 Residential | 53 | 48 | 6 |
|  |  | C30 | 1 Residential | 61 | 52 | 9 |
|  |  | C31 | 1 Residential | 54 | 48 | 6 |
|  |  | C32 | 1 Residential | 58 | 50 | 8 |
|  |  | C33 | 2 Residential | 51 | 46 | 5 |
|  |  | C34 | 1 Residential | 68 | 60 | 8 |
|  |  | C35 | 1 Residential | 67 | 55 | 12 |
|  |  | C36 | 3 Residential | 56 | 49 | 7 |
|  |  | C37 | 1 Residential | 62 | 51 | 11 |
|  |  | C38 | 2 Residential | 59 | 50 | 9 |
|  |  | C39 | 1 Residential | 62 | 54 | 9 |
|  |  | C40 | 1 Residential | 57 | 51 | 6 |
|  |  | C41 | 1 Residential | 55 | 50 | 6 |
|  |  | C42 | 2 Residential | 64 | 55 | 9 |
|  |  | C43 | 1 Residential | 56 | 51 | 5 |
|  |  | C44 | 2 Residential | 68 | 58 | 10 |
|  |  | C45 | 1 Residential | 57 | 51 | 5 |
|  |  | C46 | 1 Residential | 62 | 55 | 7 |
|  |  | C47 | 1 Residential | 62 | 56 | 6 |
|  |  | C48 | 1 Residential | 54 | 50 | 4 |
|  |  | C49 | 1 Residential | 65 | 57 | 8 |
|  |  | C50 | 3 Residential | 54 | 49 | 5 |
|  |  | C51 | 1 Residential | 56 | 51 | 6 |
|  |  | C52 | 1 Residential | 67 | 57 | 10 |
|  |  | C53 | 1 Residential | 53 | 49 | 5 |
|  |  | C54 | 1 Residential | 59 | 52 | 7 |
|  |  | C55 | 3 Residential | 53 | 49 | 4 |
|  |  | C56 | 1 Residential | 71 | 58 | 13 |
|  |  | C57 | 1 Residential | 55 | 50 | 5 |
|  |  | C58 | 1 Residential | 61 | 52 | 9 |
|  |  | C59 | 1 Residential | 67 | 54 | 13 |
|  |  | C60 | 1 Residential | 52 | 49 | 3 |
|  |  | C61 | 1 Residential | 65 | 54 | 11 |
|  |  | C62 | 1 Residential | 62 | 54 | 8 |
|  |  | C63 | 1 Residential | 63 | 54 | 9 |
|  |  | C64 | 1 Residential | 62 | 54 | 8 |
|  |  | C65 | 3 Residential | 52 | 49 | 3 |
|  |  | C66 | 1 Residential | 63 | 56 | 7 |
|  |  | C67 | 1 Residential | 70 | 57 | 13 |
|  |  | C68 | 1 Residential | 70 | 59 | 11 |
|  |  | C69 | 1 Residential | 66 | 59 | 7 |
|  |  | C70 | 1 Residential | 58 | 54 | 4 |
|  |  | C71 | 1 Residential | 67 | 64 | 3 |
|  |  | C72 | 2 Residential | 55 | 54 | 1 |
|  |  | C73 | 1 Residential | 59 | 55 | 4 |
|  |  | C74 | 2 Residential | 54 | 53 | 1 |
|  |  | C75 | 1 Residential | 67 | 59 | 9 |
|  |  | C76 | 1 Residential | 67 | 60 | 7 |
| D | D2 | D31 | 1 Residential | 59 | 56 | 3 |
|  |  | D32 | 1 Residential | 66 | 59 | 7 |
|  |  | D33 | 1 Residential | 65 | 55 | 10 |
|  |  | D34 | 1 Residential | 58 | 55 | 3 |
|  |  | D35 | 1 Residential | 56 | 54 | 2 |
|  |  | D36 | 1 Residential | 56 | 53 | 3 |
|  |  | D37 | 1 Residential | 58 | 55 | 3 |
| E | E1-E3 System | E1 | 1 Residential | 63 | 60 | 3 |
|  |  | E2 | 1 Residential | 60 | 59 | 2 |
|  |  | E3 | 1 Residential | 57 | 55 | 2 |
|  |  | E4 | 1 Residential | 64 | 59 | 5 |
|  |  | E5 | 1 Residential | 66 | 59 | 7 |
|  |  | E6 | 1 Residential | 66 | 60 | 7 |
|  |  | E7 | 1 Residential | 64 | 58 | 6 |
|  |  | E8 | 2 Residential | 57 | 53 | 4 |
|  |  | E9 | 2 Residential | 54 | 50 | 3 |
|  |  | E10 | 1 Residential | 54 | 51 | 2 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \text { Net Insertion } \\ \text { Loss } \end{array}$ |
| E | E1-E3 System | E11 | 1 Residential | 67 | 62 | 5 |
|  |  | E12 | 1 Residential | 70 | 62 | 9 |
|  |  | E13 | 1 Residential | 59 | 55 | 4 |
|  |  | E14 | 1 Residential | 63 | 58 | 5 |
|  |  | E15 | 1 Residential | 66 | 60 | 7 |
|  |  | E16 | 1 Residential | 60 | 56 | 4 |
|  |  | E17 | 1 Residential | 54 | 50 | 4 |
|  |  | E18 | 1 Residential | 67 | 60 | 7 |
|  |  | E19 | 1 Residential | 61 | 57 | 4 |
|  |  | E20 | 1 Residential | 65 | 60 | 5 |
|  |  | E21 | 1 Residential | 73 | 66 | 7 |
|  |  | E22 | 2 Residential | 53 | 49 | 3 |
|  |  | E23 | 1 Residential | 62 | 56 | 5 |
|  |  | E24 | 2 Residential | 56 | 53 | 3 |
|  |  | E25 | 3 Residential | 58 | 54 | 4 |
|  |  | E26 | 2 Residential | 74 | 61 | 13 |
|  |  | E27 | 2 Residential | 57 | 54 | 3 |
|  |  | E28 | 1 Residential | 59 | 54 | 5 |
|  |  | E29 | 1 Residential | 63 | 58 | 5 |
|  |  | E30 | 1 Residential | 57 | 52 | 5 |
|  |  | E31 | 1 Residential | 59 | 54 | 5 |
|  |  | E32 | 1 Residential | 61 | 56 | 5 |
|  |  | E33 | 1 Residential | 55 | 51 | 4 |
|  |  | E34 | 1 Residential | 69 | 58 | 11 |
|  |  | E35 | 1 Residential | 60 | 55 | 5 |
|  |  | E36 | 1 Residential | 54 | 50 | 4 |
|  |  | E37 | 1 Residential | 60 | 53 | 7 |
|  |  | E38 | 2 Residential | 56 | 50 | 5 |
|  |  | E39 | 1 Residential | 72 | 60 | 12 |
|  |  | E40 | 1 Residential | 74 | 61 | 13 |
|  |  | E41 | 1 Residential | 65 | 56 | 9 |
|  |  | E42 | 1 Residential | 68 | 60 | 8 |
|  |  | E43 | 2 Residential | 58 | 51 | 7 |
|  |  | E44 | 1 Residential | 72 | 61 | 11 |
|  |  | E45 | 1 Residential | 56 | 51 | 5 |
|  |  | E46 | 2 Residential | 62 | 55 | 7 |
|  |  | E47 | 1 Residential | 67 | 59 | 8 |
|  |  | E48 | 1 Residential | 67 | 63 | 3 |
|  |  | E49 | 2 Residential | 54 | 49 | 4 |
|  |  | E50 | 1 Residential | 62 | 60 | 3 |
|  |  | E51 | 2 Residential | 58 | 55 | 3 |
|  |  | E52 | 2 Residential | 58 | 57 | 1 |
| F | F1-F3 System | F13 | 1 Residential | 68 | 63 | 5 |
|  |  | F14 | 1 Cemetery | 74 | 68 | 6 |
|  |  | F15 | 1 Cemetery | 68 | 64 | 4 |
|  |  | F16 | 1 Cemetery | 63 | 61 | 3 |
|  |  | F17 | 1 Cemetery | 75 | 67 | 8 |
|  |  | F18 | 1 Cemetery | 69 | 64 | 6 |
|  |  | F19 | 1 Cemetery | 62 | 59 | 3 |
|  |  | F20 | 1 Residential | 57 | 54 | 3 |
|  |  | F21 | 1 Residential | 62 | 58 | 5 |
|  |  | F22 | 1 Residential | 55 | 52 | 2 |
|  |  | F23 | 2 Residential | 73 | 63 | 9 |
|  |  | F24 | 1 Residential | 55 | 51 | 3 |
|  |  | F25 | 1 Residential | 66 | 59 | 7 |
|  |  | F26 | 1 Residential | 63 | 57 | 5 |
|  |  | F27 | 1 Residential | 65 | 60 | 5 |
|  |  | F28 | 1 Residential | 57 | 53 | 4 |
|  |  | F29 | 1 Residential | 60 | 56 | 4 |
|  |  | F30 | 1 Residential | 57 | 53 | 4 |
|  |  | F31 | 1 Residential | 76 | 66 | 10 |
|  |  | F32 | 1 Residential | 61 | 58 | 3 |
|  |  | F33 | 1 Residential | 55 | 52 | 3 |
|  |  | F34 | 1 Residential | 74 | 65 | 9 |
|  |  | F35 | 1 Residential | 68 | 62 | 7 |
|  |  | F36 | 2 Residential | 60 | 58 | 2 |
|  |  | F37 | 1 Residential | 64 | 59 | 5 |
|  |  | F38 | 1 Residential | 71 | 61 | 9 |
|  |  | F39 | 1 Residential | 62 | 58 | 5 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | Net Insertion Loss |
| F |  | F40 | 1 Residential | 67 | 61 | 6 |
|  |  | F41 | 1 Residential | 67 | 63 | 4 |
|  |  | F42 | 1 Residential | 70 | 64 | 5 |
|  |  | F43 | 1 Residential | 61 | 56 | 5 |
|  |  | F44 | 1 Residential | 57 | 54 | 3 |
|  |  | F45 | 1 Residential | 71 | 64 | 7 |
|  |  | F46 | 1 Residential | 61 | 57 | 4 |
|  |  | F47 | 1 Residential | 71 | 62 | 9 |
|  |  | F48 | 1 Residential | 61 | 57 | 4 |
|  |  | F49 | 1 Residential | 54 | 51 | 3 |
|  | F1-F3 System | F50 | 1 Residential | 71 | 61 | 10 |
|  |  | F51 | 1 Residential | 61 | 55 | 5 |
|  |  | F52 | 1 Residential | 66 | 59 | 7 |
|  |  | F53 | 2 Residential | 59 | 54 | 5 |
|  |  | F54 | 1 Residential | 57 | 52 | 6 |
|  |  | F55 | 1 Residential | 68 | 60 | 8 |
|  |  | F56 | 1 Residential | 61 | 55 | 6 |
|  |  | F57 | 1 Residential | 62 | 55 | 7 |
|  |  | F58 | 1 Residential | 58 | 54 | 5 |
|  |  | F59 | 1 Residential | 60 | 54 | 6 |
|  |  | F60 | 1 Residential | 70 | 62 | 7 |
|  |  | F61 | 1 Residential | 68 | 63 | 5 |
|  |  | F62 | 1 Residential | 63 | 58 | 5 |
|  |  | F63 | 1 Residential | 60 | 57 | 4 |
|  |  | F64 | 1 Residential | 75 | 72 | 4 |
|  |  | F65 | 1 Residential | 65 | 62 | 3 |
|  |  | F66 | 1 Residential | 61 | 58 | 3 |
|  |  | F67 | 1 Residential | 61 | 59 | 3 |
|  |  | F68 | 2 Residential | 62 | 62 | 0 |
|  |  | F69 | 1 Residential | 61 | 60 | 1 |
|  |  | F70 | 1 Residential | 58 | 57 | 1 |
|  | F4-F9 System | CTB16 | 1 Proposed Trail Unit | 72 | 60 | 12 |
|  |  | CTB17 | 1 Proposed Trail Unit | 66 | 57 | 9 |
|  |  | CTB18 | 1 Proposed Trail Unit | 64 | 56 | 8 |
|  |  | CTB19 | 1 Proposed Trail Unit | 63 | 56 | 7 |
|  |  | CTB20 | 1 Proposed Trail Unit | 62 | 55 | 7 |
|  |  | CTB21 | 1 Proposed Trail Unit | 63 | 55 | 9 |
|  |  | CTB22 | 1 Proposed Trail Unit | 62 | 54 | 8 |
|  |  | CTB23 | 1 Proposed Trail Unit | 62 | 53 | 8 |
|  |  | F71 | 1 Residential | 69 | 63 | 5 |
|  |  | F72 | 1 Residential | 66 | 57 | 9 |
|  |  | F73 | 1 Residential | 68 | 60 | 7 |
|  |  | F74 | 1 Residential | 64 | 56 | 8 |
|  |  | F75 | 1 Residential | 67 | 60 | 6 |
|  |  | F76 | 1 Residential | 63 | 56 | 7 |
|  |  | F77 | 1 Residential | 69 | 64 | 5 |
|  |  | F78 | 1 Residential | 61 | 54 | 7 |
|  |  | F79 | 1 Residential | 66 | 60 | 6 |
|  |  | F80 | 1 Residential | 68 | 62 | 7 |
|  |  | F81 | 1 Residential | 67 | 59 | 8 |
|  |  | F82 | 1 Residential | 61 | 55 | 6 |
|  |  | F83 | 1 Residential | 59 | 53 | 7 |
|  |  | F84 | 1 Residential | 61 | 55 | 6 |
|  |  | F85 | 1 Residential | 66 | 56 | 10 |
|  |  | F86 | 1 Residential | 67 | 57 | 10 |
|  |  | F87 | 1 Residential | 63 | 54 | 9 |
|  |  | F88 | 1 Residential | 69 | 62 | 8 |
|  |  | F89 | 1 Residential | 62 | 54 | 8 |
|  |  | F90 | 1 Residential | 73 | 64 | 8 |
|  |  | F91 | 1 Residential | 62 | 56 | 6 |
|  |  | F92 | 1 Residential | 61 | 54 | 7 |
|  |  | F93 | 1 Residential | 62 | 56 | 7 |
|  |  | F94 | 1 Residential | 71 | 59 | 12 |
|  |  | F95 | 1 Residential | 61 | 55 | 6 |
|  |  | F96 | 1 Residential | 55 | 49 | 5 |
|  |  | F97 | 1 Residential | 61 | 56 | 5 |
|  |  | F98 | 1 Residential | 58 | 53 | 6 |
|  |  | F99 | 1 Residential | 58 | 52 | 6 |
|  |  | F100 | 1 Residential | 60 | 54 | 5 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | Net Insertion Loss |
| F | F4-F9 System | F101 | 1 Residential | 57 | 51 | 6 |
|  |  | F102 | 1 Residential | 58 | 53 | 5 |
|  |  | F103 | 2 Residential | 70 | 60 | 10 |
|  |  | F104 | 1 Residential | 57 | 50 | 6 |
|  |  | F105 | 1 Residential | 74 | 69 | 6 |
|  |  | F106 | 1 Residential | 56 | 50 | 7 |
|  |  | F107 | 1 Residential | 57 | 51 | 6 |
|  |  | F108 | 1 Residential | 60 | 54 | 6 |
|  |  | F109 | 1 Residential | 63 | 57 | 6 |
|  |  | F110 | 1 Residential | 55 | 50 | 6 |
|  |  | F111 | 1 Residential | 57 | 51 | 6 |
|  |  | F112 | 1 Residential | 67 | 57 | 10 |
|  |  | F113 | 1 Residential | 57 | 51 | 6 |
|  |  | F114 | 1 Residential | 58 | 52 | 6 |
|  |  | F115 | 1 Residential | 59 | 53 | 6 |
|  |  | F116 | 1 Residential | 67 | 58 | 9 |
|  |  | F117 | 1 Residential | 61 | 54 | 7 |
|  |  | F118 | 1 Residential | 56 | 50 | 6 |
|  |  | F119 | 1 Residential | 58 | 51 | 6 |
|  |  | F120 | 1 Residential | 60 | 54 | 6 |
|  |  | F121 | 1 Residential | 61 | 56 | 5 |
|  |  | F122 | 1 Residential | 59 | 52 | 6 |
|  |  | F123 | 1 Residential | 62 | 58 | 4 |
|  |  | F124 | 1 Residential | 56 | 53 | 3 |
|  |  | F125 | 1 Residential | 60 | 56 | 4 |
|  |  | F126 | 1 Residential | 58 | 53 | 5 |
|  |  | F127 | 1 Residential | 60 | 55 | 4 |
|  |  | F128 | 1 Residential | 67 | 61 | 7 |
|  |  | F129 | 1 Residential | 57 | 52 | 5 |
|  |  | F130 | 1 Residential | 60 | 54 | 6 |
|  |  | F131 | 2 Residential | 56 | 51 | 5 |
|  |  | F132 | 2 Residential | 58 | 52 | 5 |
|  |  | F133 | 2 Residential | 59 | 54 | 5 |
|  |  | F134 | 3 Residential | 57 | 52 | 5 |
|  |  | F135 | 2 Residential | 57 | 53 | 4 |
|  |  | F136 | 2 Residential | 55 | 51 | 4 |
|  |  | F137 | 1 Residential | 59 | 56 | 2 |
|  |  | F138 | 2 Residential | 56 | 51 | 4 |
|  |  | F139 | 1 Residential | 57 | 54 | 3 |
|  |  | F140 | 2 Residential | 55 | 51 | 4 |
|  |  | F141 | 1 Historic Site | 68 | 59 | 8 |
| G | G1-G7 System | G1 | 1 Residential | 62 | 62 | 0 |
|  |  | G2 | 1 Residential | 54 | 53 | 1 |
|  |  | G3 | 1 Residential | 63 | 63 | 0 |
|  |  | G4 | 1 Residential | 57 | 57 | 0 |
|  |  | G5 | 1 Residential | 61 | 60 | 1 |
|  |  | G6 | 1 Residential | 52 | 51 | 1 |
|  |  | G7 | 1 Residential | 55 | 54 | 1 |
|  |  | G8 | 1 Residential | 51 | 49 | 1 |
|  |  | G9 | 1 Residential | 53 | 52 | 1 |
|  |  | G10 | 1 Residential | 50 | 49 | 2 |
|  |  | G11 | 1 Residential | 64 | 59 | 5 |
|  |  | G12 | 1 Residential | 51 | 50 | 1 |
|  |  | G13 | 1 Residential | 50 | 48 | 2 |
|  |  | G14 | 1 Residential | 51 | 49 | 2 |
|  |  | G15 | 1 Residential | 53 | 50 | 3 |
|  |  | G16 | 1 Residential | 69 | 62 | 7 |
|  |  | G17 | 1 Residential | 59 | 55 | 4 |
|  |  | G18 | 2 Residential | 56 | 50 | 5 |
|  |  | G19 | 1 Residential | 57 | 52 | 5 |
|  |  | G20 | 1 Residential | 70 | 63 | 8 |
|  |  | G21 | 1 Residential | 68 | 59 | 9 |
|  |  | G22 | 1 Residential | 60 | 54 | 6 |
|  |  | G23 | 1 Residential | 68 | 59 | 9 |
|  |  | G24 | 1 Residential | 61 | 54 | 7 |
|  |  | G25 | 1 Residential | 60 | 52 | 8 |
|  |  | G26 | 1 Residential | 68 | 59 | 10 |
|  |  | G27 | 1 Residential | 59 | 52 | 8 |
|  |  | G28 | 1 Residential | 67 | 58 | 9 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | Net Insertion Loss |
| G | G1-G7 System | G29 | 1 Residential | 59 | 53 | 6 |
|  |  | G30 | 1 Residential | 67 | 58 | 10 |
|  |  | G31 | 1 Residential | 59 | 53 | 6 |
|  |  | G32 | 1 Residential | 60 | 54 | 6 |
|  |  | G33 | 1 Residential | 60 | 55 | 5 |
|  |  | G34 | 1 Residential | 58 | 52 | 6 |
|  |  | G35 | 1 Residential | 57 | 51 | 6 |
|  |  | G36 | 1 Residential | 61 | 56 | 5 |
|  |  | G37 | 1 Residential | 61 | 55 | 5 |
|  |  | G38 | 1 Residential | 58 | 52 | 6 |
|  |  | G39 | 1 Residential | 57 | 51 | 6 |
|  |  | G40 | 1 Residential | 61 | 56 | 5 |
|  |  | G41 | 1 Residential | 54 | 50 | 5 |
|  |  | G42 | 1 Residential | 63 | 57 | 7 |
|  |  | G43 | 1 Residential | 59 | 53 | 6 |
|  |  | G44 | 1 Residential | 64 | 57 | 7 |
|  |  | G45 | 1 Residential | 56 | 52 | 5 |
|  |  | G46 | 1 Residential | 53 | 49 | 4 |
|  |  | G47 | 1 Residential | 63 | 57 | 6 |
|  |  | G48 | 1 Residential | 70 | 58 | 12 |
|  |  | G49 | 2 Residential | 61 | 53 | 7 |
|  |  | G50 | 1 Residential | 55 | 51 | 5 |
|  |  | G51 | 1 Residential | 72 | 61 | 11 |
|  |  | G52 | 1 Residential | 62 | 56 | 6 |
|  |  | G53 | 1 Residential | 58 | 53 | 5 |
|  |  | G54 | 1 Residential | 59 | 55 | 5 |
|  |  | G55 | 1 Residential | 73 | 63 | 10 |
|  |  | G56 | 1 Residential | 55 | 51 | 4 |
|  |  | G57 | 1 Residential | 62 | 58 | 4 |
|  |  | G58 | 1 Residential | 55 | 53 | 3 |
|  |  | G59 | 1 Residential | 72 | 62 | 10 |
|  |  | G60 | 1 Residential | 58 | 56 | 2 |
|  |  | G61 | 1 Residential | 72 | 66 | 7 |
|  |  | G62 | 1 Residential | 55 | 51 | 4 |
|  |  | G63 | 1 Residential | 56 | 52 | 3 |
|  |  | G64 | 1 Residential | 57 | 55 | 3 |
|  |  | G65 | 1 Residential | 63 | 61 | 2 |
|  |  | G66 | 1 Residential | 56 | 53 | 3 |
|  |  | G67 | 1 Residential | 61 | 58 | 3 |
|  |  | G68 | 1 Residential | 58 | 55 | 3 |
|  |  | G69 | 2 Residential | 60 | 56 | 3 |
|  |  | G70 | 1 Residential | 60 | 57 | 3 |
|  |  | G71 | 1 Residential | 69 | 66 | 3 |
|  |  | G72 | 1 Residential | 57 | 54 | 4 |
|  |  | G73 | 1 Church (Interior) | 38 | 34 | 3 |
|  |  | G75 | 1 Residential | 68 | 61 | 7 |
|  |  | G76 | 1 Residential | 67 | 60 | 7 |
|  |  | G77 | 1 Residential | 67 | 60 | 7 |
|  |  | G78 | 1 Residential | 64 | 59 | 5 |
|  |  | G79 | 1 Residential | 63 | 57 | 5 |
|  |  | G80 | 1 Residential | 59 | 54 | 5 |
|  |  | G81 | 1 Residential | 62 | 57 | 6 |
|  |  | G82 | 1 Residential | 60 | 55 | 5 |
|  |  | G83 | 1 Residential | 61 | 56 | 6 |
|  |  | G84 | 3 Residential | 57 | 53 | 4 |
|  |  | G85 | 2 Residential | 59 | 54 | 5 |
|  |  | G86 | 2 Residential | 57 | 53 | 4 |
|  |  | G87 | 1 Residential | 61 | 56 | 5 |
|  |  | G88 | 2 Residential | 71 | 63 | 8 |
|  |  | G89 | 1 Residential | 58 | 54 | 4 |
|  |  | G90 | 2 Residential | 63 | 58 | 5 |
|  |  | G91 | 1 Residential | 61 | 57 | 4 |
|  |  | G92 | 1 Residential | 61 | 58 | 3 |
|  | G8-G9 System | LT1 | 1 Existing Trail (Not being relocated) | 59 | 57 | 2 |
|  |  | LT2 | 1 Existing Trail (Not being relocated) | 60 | 58 | 3 |
|  |  | LT3 | 1 Existing Trail (Not being relocated) | 61 | 58 | 3 |
|  |  | LT4 | 1 Existing Trail (Not being relocated) | 63 | 58 | 4 |
|  |  | LT5 | 1 Existing Trail (Not being relocated) | 64 | 59 | 5 |
|  |  | LT6 | 1 Existing Trail (Not being relocated) | 65 | 59 | 5 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \text { Abated (2040) } \\ \text { Noise Level } \\ \hline \end{array}$ | Net Insertion Loss |
| G |  | LT7 | 1 Existing Trail (Not being relocated) | 65 | 61 | 4 |
|  |  | CTB1 | 1 Proposed Trail Unit | 64 | 59 | 5 |
|  |  | CTB2 | 1 Proposed Trail Unit | 65 | 60 | 5 |
|  |  | CTB3 | 1 Proposed Trail Unit | 66 | 62 | 4 |
|  |  | CTB4 | 1 Proposed Trail Unit | 68 | 64 | 4 |
|  |  | CTB5 | 1 Proposed Trail Unit | 71 | 68 | 3 |
|  |  | CTB6 | 1 Proposed Trail Unit | 75 | 74 | 1 |
|  |  | CTB7 | 1 Proposed Trail Unit | 71 | 63 | 8 |
|  |  | CTB8 | 1 Proposed Trail Unit | 71 | 62 | 9 |
|  |  | CTB9 | 1 Proposed Trail Unit | 71 | 61 | 9 |
|  |  | CTB10 | 1 Proposed Trail Unit | 70 | 61 | 9 |
|  |  | CTB11 | 1 Proposed Trail Unit | 70 | 61 | 9 |
|  |  | CTB12 | 1 Proposed Trail Unit | 69 | 61 | 8 |
|  |  | CTB13 | 1 Proposed Trail Unit | 69 | 61 | 8 |
|  |  | CTB14 | 1 Proposed Trail Unit | 69 | 62 | 7 |
|  |  | CTB15 | 1 Proposed Trail Unit | 69 | 62 | 7 |
|  |  | G93 | 1 Residential | 59 | 57 | 2 |
|  |  | G94 | 1 Residential | 60 | 57 | 2 |
|  |  | G95 | 1 Residential | 60 | 58 | 2 |
|  |  | G96 | 1 Residential | 60 | 57 | 4 |
|  |  | G97 | 1 Residential | 61 | 57 | 3 |
|  |  | G98 | 2 Residential | 59 | 56 | 2 |
|  |  | G99 | 2 Residential | 60 | 57 | 3 |
|  |  | G100 | 1 Residential | 61 | 57 | 3 |
|  |  | G101 | 1 Residential | 62 | 58 | 4 |
|  |  | G102 | 2 Residential | 58 | 56 | 3 |
|  |  | G103 | 1 Residential | 60 | 57 | 3 |
|  |  | G104 | 1 Residential | 65 | 60 | 5 |
|  |  | G105 | 1 Residential | 61 | 58 | 3 |
|  |  | G106 | 1 Residential | 62 | 58 | 3 |
|  |  | G107 | 1 Residential | 61 | 58 | 3 |
|  |  | G108 | 1 Residential | 62 | 59 | 3 |
|  |  | G109 | 1 Residential | 64 | 60 | 4 |
|  |  | G110 | 1 Residential | 59 | 57 | 3 |
|  |  | G111 | 1 Residential | 62 | 59 | 4 |
|  |  | G112 | 1 Residential | 60 | 57 | 4 |
|  | G10-G13 System | G113 | 1 Residential | 62 | 61 | 2 |
|  |  | G114 | 1 Residential | 70 | 65 | 6 |
|  |  | G115 | 1 Residential | 61 | 58 | 3 |
|  |  | G116 | 1 Residential | 74 | 69 | 5 |
|  |  | G117 | 1 Residential | 53 | 50 | 4 |
|  |  | G118 | 2 Residential | 54 | 51 | 4 |
|  |  | G119 | 1 Residential | 57 | 54 | 3 |
|  |  | G120 | 1 Residential | 60 | 57 | 3 |
|  |  | G121 | 1 Residential | 53 | 50 | 3 |
|  |  | G122 | 1 Residential | 71 | 63 | 8 |
|  |  | G123 | 1 Residential | 66 | 59 | 7 |
|  |  | G124 | 1 Residential | 53 | 51 | 2 |
|  |  | G125 | 1 Residential | 55 | 52 | 2 |
|  |  | G126 | 1 Residential | 57 | 54 | 2 |
|  |  | G127 | 1 Residential | 69 | 60 | 8 |
|  |  | G128 | 1 Residential | 52 | 49 | 3 |
|  |  | G129 | 1 Residential | 67 | 59 | 8 |
|  |  | G130 | 1 Residential | 63 | 56 | 6 |
|  |  | G131 | 1 Residential | 53 | 50 | 3 |
|  |  | G132 | 1 Residential | 54 | 52 | 3 |
|  |  | G133 | 1 Residential | 58 | 56 | 2 |
|  |  | G134 | 1 Residential | 54 | 52 | 2 |
|  |  | G135 | 1 Residential | 54 | 51 | 3 |
|  |  | G136 | 1 Residential | 52 | 50 | 2 |
|  |  | G137 | 1 Residential | 72 | 68 | 4 |
|  |  | G138 | 1 Residential | 65 | 60 | 5 |
|  |  | G139 | 1 Residential | 53 | 51 | 2 |
|  |  | G140 | 1 Residential | 55 | 53 | 2 |
|  |  | G141 | 1 Residential | 53 | 52 | 2 |
|  |  | G142 | 1 Residential | 48 | 46 | 2 |
|  |  | G143 | 1 Residential | 66 | 60 | 6 |
|  |  | G144 | 1 Residential | 56 | 55 | 2 |
|  |  | G145 | 1 Residential | 57 | 55 | 2 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \text { Abated (2040) } \\ \text { Noise Level } \\ \hline \end{array}$ | Net Insertion Loss |
| G | G10-G13 System | G146 | 1 Residential | 58 | 56 | 2 |
|  |  | G147 | 1 Residential | 67 | 60 | 7 |
|  |  | G148 | 1 Residential | 49 | 48 | 2 |
|  |  | G149 | 1 Residential | 55 | 53 | 2 |
|  |  | G150 | 1 Residential | 60 | 58 | 2 |
|  |  | G151 | 1 Residential | 69 | 61 | 9 |
|  |  | G152 | 1 Residential | 53 | 51 | 2 |
|  |  | G153 | 1 Residential | 56 | 54 | 2 |
|  |  | G154 | 1 Residential | 61 | 59 | 2 |
|  |  | G155 | 1 Residential | 72 | 64 | 8 |
|  |  | G156 | 1 Residential | 55 | 54 | 2 |
|  |  | G157 | 1 Residential | 60 | 58 | 3 |
|  |  | G158 | 1 Residential | 72 | 65 | 7 |
|  |  | G159 | 1 Residential | 64 | 61 | 3 |
|  |  | G160 | 1 Residential | 59 | 57 | 3 |
|  |  | G161 | 1 Residential | 72 | 64 | 8 |
|  |  | G162 | 1 Residential | 73 | 64 | 8 |
|  |  | G163 | 1 Residential | 63 | 60 | 3 |
|  |  | G164 | 1 Residential | 62 | 59 | 3 |
|  |  | G165 | 1 Residential | 73 | 66 | 7 |
|  |  | G166 | 1 Residential | 62 | 59 | 3 |
|  |  | G167 | 1 Residential | 73 | 68 | 5 |
|  |  | G168 | 1 Residential | 63 | 60 | 2 |
|  |  | G169 | 1 Residential | 70 | 64 | 6 |
|  |  | G170 | 1 Residential | 68 | 64 | 4 |
|  | G14-G16 System | G171 | 1 Preschool (Interior) | 36 | 33 | 3 |
|  |  | G172 | 1 Residential | 72 | 65 | 7 |
|  |  | G173 | 1 Residential | 56 | 55 | 2 |
|  |  | G174 | 1 Playground | 68 | 64 | 5 |
|  |  | G175 | 1 Residential | 60 | 58 | 2 |
|  |  | G176 | 1 Residential | 67 | 63 | 4 |
|  |  | G177 | 1 Dentist Office (Interior) | 49 | 43 | 6 |
| H | H1-H2 System | H1 | 1 Residential | 72 | 67 | 5 |
|  |  | H2 | 1 Residential | 76 | 69 | 7 |
|  |  | H3 | 1 Residential | 72 | 65 | 6 |
|  |  | H4 | 1 Residential | 58 | 57 | 1 |
|  |  | H5 | 3 Residential | 60 | 57 | 2 |
|  |  | H6 | 1 Residential | 57 | 56 | 1 |
|  |  | H7 | 1 Residential | 60 | 59 | 1 |
|  |  | H8 | 1 Residential | 58 | 56 | 2 |
|  |  | H9 | 1 Residential | 59 | 57 | 2 |
|  |  | H10 | 1 Residential | 63 | 61 | 1 |
|  |  | H11 | 1 Residential | 59 | 58 | 1 |
|  |  | H13 | 2 Residential | 59 | 58 | 1 |
|  | H3-H11 System | H12 | 1 Residential | 70 | 61 | 9 |
|  |  | H14 | 1 Residential | 64 | 60 | 4 |
|  |  | H15 | 1 Residential | 70 | 61 | 9 |
|  |  | H16 | 1 Residential | 59 | 56 | 3 |
|  |  | H17 | 1 Residential | 62 | 57 | 5 |
|  |  | H18 | 1 Residential | 61 | 57 | 5 |
|  |  | H19 | 1 Residential | 63 | 58 | 5 |
|  |  | H20 | 1 Residential | 67 | 60 | 7 |
|  |  | H21 | 1 Residential | 60 | 56 | 4 |
|  |  | H22 | 1 Residential | 59 | 55 | 4 |
|  |  | H23 | 1 Residential | 58 | 54 | 4 |
|  |  | H24 | 1 Residential | 77 | 68 | 9 |
|  |  | H25 | 1 Residential | 64 | 60 | 5 |
|  |  | H26 | 1 Residential | 64 | 59 | 6 |
|  |  | H27 | 2 Residential | 72 | 66 | 6 |
|  |  | H28 | 2 Residential | 64 | 59 | 5 |
|  |  | H29 | 1 Residential | 59 | 55 | 4 |
|  |  | H30 | 1 Residential | 76 | 68 | 8 |
|  |  | H31 | 1 Residential | 61 | 56 | 4 |
|  |  | H32 | 1 Residential | 64 | 59 | 5 |
|  |  | H33 | 2 Residential | 60 | 56 | 4 |
|  |  | H34 | 1 Residential | 76 | 67 | 9 |
|  |  | H35 | 1 Residential | 65 | 59 | 6 |
|  |  | H36 | 2 Residential | 64 | 59 | 5 |
|  |  | H37 | 1 Residential | 59 | 55 | 4 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) Noise Level | Net Insertion Loss |
| H | H3-H11 System | H38 | 1 Residential | 74 | 68 | 6 |
|  |  | H39 | 1 Residential | 66 | 61 | 5 |
|  |  | H40 | 1 Residential | 60 | 55 | 5 |
|  |  | H41 | 1 Residential | 74 | 69 | 5 |
|  |  | H42 | 1 Residential | 61 | 57 | 4 |
|  |  | H43 | 1 Residential | 59 | 55 | 4 |
|  |  | H44 | 1 Residential | 74 | 69 | 5 |
|  |  | H45 | 1 Residential | 63 | 59 | 4 |
|  |  | H46 | 1 Residential | 60 | 56 | 4 |
|  |  | H47 | 1 Residential | 65 | 60 | 5 |
|  |  | H48 | 1 Residential | 64 | 59 | 5 |
|  |  | H49 | 1 Residential | 61 | 56 | 5 |
|  |  | H50 | 1 Residential | 65 | 59 | 6 |
|  |  | H51 | 1 Residential | 63 | 58 | 5 |
|  |  | H52 | 1 Residential | 64 | 59 | 5 |
|  |  | H53 | 1 Residential | 64 | 58 | 6 |
|  |  | H54 | 1 Residential | 60 | 56 | 4 |
|  |  | H55 | 1 Residential | 62 | 58 | 4 |
|  |  | H57 | 1 School (Interior) | 43 | 39 | 4 |
|  |  | H58 | 1 Residential | 58 | 55 | 3 |
|  |  | H59 | 1 Residential | 58 | 56 | 2 |
|  |  | H60 | 1 Residential | 61 | 60 | 1 |
|  |  | H61 | 1 Playground Unit | 70 | 62 | 8 |
|  |  | H62 | 1 Playground Unit | 69 | 63 | 7 |
|  |  | H63 | 1 Playground Unit | 68 | 64 | 4 |
|  |  | H64 | 1 Playground Unit | 78 | 63 | 15 |
|  |  | H65 | 1 Playground Unit | 78 | 63 | 16 |
|  |  | H66 | 1 Playground Unit | 78 | 66 | 12 |
| I/J/K | $\begin{gathered} \text { I1 - I6, J1 - J4, and } \\ \text { K1 - K3 System } \end{gathered}$ | I2 | 1 Residential | 56 | 52 | 3 |
|  |  | I3 | 1 Residential | 64 | 60 | 4 |
|  |  | I4 | 1 Residential | 56 | 53 | 4 |
|  |  | I5 | 1 Residential | 58 | 54 | 4 |
|  |  | I6 | 1 Nursery | 70 | 64 | 7 |
|  |  | 17 | 1 Residential | 59 | 55 | 4 |
|  |  | 18 | 2 Residential | 58 | 54 | 5 |
|  |  | I9 | 1 Residential | 67 | 59 | 9 |
|  |  | I10 | 1 Residential | 65 | 57 | 8 |
|  |  | I11 | 2 Residential | 61 | 54 | 7 |
|  |  | I12 | 1 Residential | 57 | 53 | 4 |
|  |  | I13 | 1 Residential | 64 | 56 | 8 |
|  |  | I14 | 1 Residential | 65 | 57 | 9 |
|  |  | I15 | 1 Residential | 61 | 57 | 5 |
|  |  | I16 | 1 Residential | 57 | 53 | 4 |
|  |  | I17 | 1 Residential | 59 | 54 | 5 |
|  |  | I18 | 1 Residential | 57 | 53 | 5 |
|  |  | I19 | 1 Residential | 67 | 58 | 9 |
|  |  | I20 | 1 Residential | 59 | 54 | 5 |
|  |  | I21 | 1 Residential | 64 | 59 | 5 |
|  |  | I22 | 1 Residential | 58 | 53 | 5 |
|  |  | I23 | 1 Residential | 68 | 61 | 7 |
|  |  | I24 | 1 Residential | 62 | 57 | 5 |
|  |  | I25 | 1 Residential | 56 | 52 | 4 |
|  |  | I26 | 2 Residential | 59 | 55 | 5 |
|  |  | 127 | 2 Residential | 58 | 52 | 6 |
|  |  | I28 | 2 Residential | 59 | 54 | 5 |
|  |  | I29 | 1 Residential | 62 | 56 | 6 |
|  |  | I30 | 1 Residential | 59 | 53 | 5 |
|  |  | I31 | 1 Residential | 62 | 56 | 6 |
|  |  | I32 | 1 Residential | 70 | 61 | 9 |
|  |  | I33 | 2 Residential | 62 | 57 | 5 |
|  |  | I34 | 2 Residential | 55 | 52 | 3 |
|  |  | 135 | 1 Residential | 71 | 60 | 11 |
|  |  | I36 | 1 Residential | 67 | 60 | 7 |
|  |  | I37 | 2 Residential | 56 | 52 | 5 |
|  |  | I38 | 1 Residential | 58 | 54 | 3 |
|  |  | I39 | 1 Residential | 61 | 57 | 5 |
|  |  | I40 | 1 Residential | 74 | 64 | 10 |
|  |  | I41 | 2 Residential | 58 | 53 | 4 |
|  |  | I42 | 3 Residential | 56 | 52 | 4 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | Net Insertion Loss |
| I/J/K | I1 - I6, J1- J4, and K1 - K3 System | I43 | 1 Residential | 68 | 63 | 5 |
|  |  | I44 | 2 Residential | 58 | 54 | 4 |
|  |  | I45 | 2 Residential | 60 | 56 | 4 |
|  |  | I46 | 2 Residential | 60 | 56 | 4 |
|  |  | I47 | 1 Residential | 67 | 64 | 3 |
|  |  | I48 | 2 Residential | 57 | 52 | 4 |
|  |  | I49 | 1 Residential | 64 | 60 | 3 |
|  |  | I50 | 2 Residential | 60 | 56 | 4 |
|  |  | I51 | 3 Residential | 59 | 55 | 4 |
|  |  | I52 | 1 Residential | 62 | 58 | 4 |
|  |  | I53 | 1 Residential | 65 | 58 | 6 |
|  |  | 154 | 1 Residential | 59 | 55 | 4 |
|  |  | I55 | 1 Residential | 59 | 56 | 4 |
|  |  | I56 | 3 Residential | 56 | 52 | 4 |
|  |  | I57 | 2 Residential | 54 | 51 | 4 |
|  |  | 158 | 1 Residential | 51 | 49 | 2 |
|  |  | I59 | 1 Residential | 58 | 56 | 3 |
|  |  | I60 | 1 Residential | 52 | 49 | 2 |
|  |  | I61 | 1 Residential | 56 | 52 | 4 |
|  |  | I62 | 2 Residential | 53 | 52 | 2 |
|  |  | I63 | 1 Residential | 57 | 54 | 3 |
|  |  | I64 | 1 Residential | 55 | 52 | 3 |
|  |  | I65 | 1 Residential | 56 | 53 | 3 |
|  |  | I66 | 2 Residential | 58 | 54 | 4 |
|  |  | J1 | 2 Residential | 55 | 54 | 1 |
|  |  | J2 | 1 Residential | 56 | 54 | 1 |
|  |  | J3 | 2 Residential | 53 | 51 | 2 |
|  |  | J4 | 1 Residential | 60 | 59 | 1 |
|  |  | J5 | 1 Residential | 70 | 65 | 5 |
|  |  | J6 | 1 Cemetery | 63 | 60 | 3 |
|  |  | J7 | 1 Residential | 62 | 58 | 4 |
|  |  | J8 | 1 Cemetery | 65 | 59 | 7 |
|  |  | J9 | 1 Cemetery | 63 | 58 | 5 |
|  |  | J10 | 1 Cemetery | 60 | 56 | 4 |
|  |  | J11 | 1 Residential | 67 | 59 | 8 |
|  |  | J12 | 1 Cemetery | 68 | 60 | 8 |
|  |  | J13 | 1 Cemetery | 66 | 60 | 6 |
|  |  | J14 | 1 Cemetery | 63 | 58 | 5 |
|  |  | J15 | 1 Cemetery | 57 | 53 | 4 |
|  |  | J16 | 1 Residential | 54 | 51 | 3 |
|  |  | J17 | 1 Cemetery | 69 | 61 | 8 |
|  |  | J18 | 1 Cemetery | 69 | 62 | 7 |
|  |  | J19 | 1 Residential | 56 | 52 | 5 |
|  |  | J20 | 1 Cemetery | 66 | 61 | 6 |
|  |  | J21 | 1 Cemetery | 61 | 56 | 5 |
|  |  | J22 | 1 Cemetery | 57 | 53 | 4 |
|  |  | J23 | 1 Cemetery | 74 | 65 | 9 |
|  |  | J24 | 2 Residential | 57 | 52 | 4 |
|  |  | J25 | 1 Cemetery | 69 | 63 | 6 |
|  |  | J26 | 1 Cemetery | 67 | 61 | 6 |
|  |  | J27 | 1 Cemetery | 60 | 55 | 5 |
|  |  | J28 | 1 Residential | 56 | 52 | 4 |
|  |  | J29 | 1 Cemetery | 74 | 68 | 6 |
|  |  | J30 | 1 Cemetery | 65 | 59 | 6 |
|  |  | J31 | 1 Church (Interior) | 47 | 41 | 6 |
|  |  | K1 | 1 Residential | 67 | 59 | 8 |
|  |  | K2 | 1 Pre-school (Interior) | 37 | 30 | 7 |
|  |  | K3 | 1 Pre-school (Exterior) | 61 | 55 | 7 |
|  |  | K4 | 1 Residential | 66 | 59 | 6 |
|  |  | K5 | 1 Residential | 55 | 50 | 5 |
|  |  | K6 | 1 Residential | 55 | 51 | 5 |
|  |  | K7 | 1 Residential | 58 | 53 | 5 |
|  |  | K8 | 1 Church (Interior) | 42 | 38 | 4 |
|  |  | K9 | 1 Residential | 70 | 62 | 9 |
|  |  | K10 | 1 Residential | 64 | 57 | 7 |
|  |  | K11 | 1 Residential | 66 | 60 | 5 |
|  |  | K12 | 1 Residential | 63 | 58 | 6 |
|  |  | K13 | 1 Residential | 55 | 50 | 4 |
|  |  | K14 | 1 Residential | 50 | 46 | 4 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Net Insertion } \\ \text { Loss } \end{array} \\ \hline \end{array}$ |
| I/J/K | $\begin{array}{\|l\|} \text { I1 - I6, J1 - J4, and } \\ \text { K1 - K3 System } \end{array}$ | K15 | 1 Residential | 59 | 52 | 7 |
|  |  | K16 | 2 Residential | 59 | 52 | 7 |
|  |  | K17 | 1 Residential | 63 | 54 | 9 |
|  |  | K18 | 2 Residential | 59 | 52 | 7 |
|  |  | K19 | 1 Residential | 66 | 58 | 9 |
|  |  | K20 | 1 Residential | 59 | 53 | 6 |
|  |  | K21 | 1 Residential | 61 | 54 | 6 |
|  |  | K22 | 1 Residential | 62 | 56 | 7 |
|  |  | K23 | 1 Residential | 67 | 59 | 8 |
|  |  | K24 | 1 Non-Profit Organization (Exterior) | 59 | 53 | 6 |
|  |  | K25 | 1 Non-Profit Organization (Interior) | 43 | 35 | 8 |
| L | L1-L9 System | L2 | 1 Residential | 68 | 63 | 5 |
|  |  | L3 | 1 Residential | 70 | 64 | 6 |
|  |  | L4 | 1 Residential | 72 | 67 | 5 |
|  |  | L5 | 1 Residential | 71 | 66 | 4 |
|  |  | L6 | 1 Residential | 77 | 68 | 8 |
|  |  | L7 | 1 Residential | 64 | 61 | 3 |
|  |  | L8 | 1 Residential | 67 | 64 | 3 |
|  |  | L9 | 1 Residential | 73 | 68 | 5 |
|  |  | L10 | 1 Residential | 76 | 67 | 9 |
|  |  | L13 | 1 Residential | 61 | 58 | 3 |
|  |  | L14 | 1 Residential | 59 | 57 | 3 |
|  |  | L15 | 1 Residential | 57 | 56 | 1 |
| M | M1 | M2 | 1 Residential | 67 | 60 | 7 |
|  |  | M3 | 1 Residential | 64 | 60 | 4 |
|  |  | M4 | 1 Residential | 62 | 62 | 1 |
|  |  | M5 | 1 Residential | 61 | 60 | 1 |
|  |  | M6 | 1 Residential | 62 | 61 | 1 |
|  |  | M7 | 1 Residential | 64 | 63 | 0 |
|  |  | M8 | 1 Residential | 62 | 61 | 1 |
|  |  | M9 | 1 Residential | 62 | 61 | 1 |
|  |  | M10 | 1 Residential | 62 | 62 | 0 |
| N | N1-N3 System | N1 | 2 Residential | 53 | 52 | 1 |
|  |  | N2 | 2 Residential | 55 | 54 | 1 |
|  |  | N3 | 2 Residential | 56 | 55 | 1 |
|  |  | N4 | 1 Residential | 58 | 56 | 2 |
|  |  | N5 | 1 Residential | 59 | 57 | 2 |
|  |  | N6 | 1 Residential | 54 | 53 | 1 |
|  |  | N7 | 1 Residential | 53 | 52 | 1 |
|  |  | N8 | 1 Residential | 61 | 58 | 2 |
|  |  | N9 | 2 Residential | 53 | 52 | 1 |
|  |  | N10 | 1 Residential | 63 | 60 | 3 |
|  |  | N11 | 1 Residential | 55 | 53 | 2 |
|  |  | N12 | 1 Residential | 66 | 61 | 5 |
|  |  | N13 | 1 Residential | 55 | 53 | 2 |
|  |  | N14 | 1 Residential | 50 | 49 | 1 |
|  |  | N15 | 1 Residential | 49 | 48 | 1 |
|  |  | N16 | 1 Residential | 56 | 54 | 2 |
|  |  | N17 | 1 Residential | 50 | 49 | 1 |
|  |  | N18 | 1 Residential | 50 | 49 | 1 |
|  |  | N19 | 1 Residential | 53 | 51 | 2 |
|  |  | N20 | 1 Residential | 66 | 60 | 6 |
|  |  | N21 | 1 Residential | 51 | 50 | 1 |
|  |  | N22 | 2 Residential | 50 | 49 | 1 |
|  |  | N23 | 1 Residential | 51 | 50 | 1 |
|  |  | N24 | 1 Residential | 51 | 50 | 1 |
|  |  | N25 | 1 Residential | 61 | 57 | 5 |
|  |  | N26 | 1 Residential | 56 | 54 | 2 |
|  |  | N27 | 2 Residential | 50 | 49 | 1 |
|  |  | N28 | 1 Residential | 55 | 53 | 2 |
|  |  | N29 | 3 Residential | 51 | 50 | 1 |
|  |  | N30 | 2 Residential | 50 | 49 | 1 |
|  |  | N31 | 2 Residential | 49 | 49 | 1 |
|  |  | N32 | 1 Residential | 49 | 48 | 1 |
|  |  | N33 | 1 Residential | 59 | 57 | 2 |
|  |  | N34 | 2 Residential | 52 | 52 | 0 |
|  |  | N35 | 2 Residential | 50 | 49 | 2 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CNE Descriptor | Barrier | Site Descriptor | Site Representation | Build (2040) <br> Noise Level | Abated (2040) <br> Noise Level | Net Insertion Loss |
| N | N1 - N3 System | N36 | 1 Residential | 64 | 62 | 2 |
|  |  | N37 | 1 Residential | 53 | 49 | 3 |
|  |  | N38 | 1 Residential | 63 | 57 | 6 |
|  |  | N39 | 1 Residential | 55 | 53 | 3 |
|  |  | N40 | 1 Residential | 55 | 54 | 0 |
|  |  | N41 | 1 Residential | 67 | 58 | 8 |
|  |  | N42 | 2 Residential | 55 | 55 | 0 |
|  |  | N43 | 1 Residential | 54 | 52 | 2 |
|  |  | N44 | 1 Residential | 64 | 57 | 7 |
|  |  | N45 | 1 Residential | 55 | 55 | 1 |
|  |  | N46 | 1 Residential | 64 | 59 | 5 |
|  |  | N47 | 1 Residential | 62 | 57 | 6 |
|  |  | N48 | 1 Residential | 56 | 56 | 0 |
|  |  | N49 | 1 Residential | 58 | 58 | 0 |
|  |  | N50 | 1 Residential | 59 | 59 | 0 |
|  |  | N51 | 1 Residential | 59 | 58 | 0 |
|  |  | N53 | 1 Church (Interior) | 40 | 39 | 0 |
|  |  | N55 | 2 Residential | 50 | 48 | 2 |
|  |  | N56 | 1 Residential | 49 | 47 | 2 |
|  |  | N57 | 1 Residential | 48 | 47 | 1 |
|  |  | N58 | 2 Residential | 54 | 53 | 1 |
|  |  | N59 | 1 Residential | 55 | 54 | 1 |
|  |  | N60 | 2 Residential | 53 | 52 | 1 |
|  | N4 | N54 | 1 Residential | 72 | 64 | 7 |
|  | Noise Levels approach or exceed FHWA/VDOT Noise Abatement Criteria Insertion Losses are considered "feasible". Insertion Losses are $7 \mathrm{~dB}(\mathrm{~A})$ or greater |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Appendix J <br> REFERENCES

## References

- Procedures for Abatement of Highway Traffic Noise and Construction Noise 23 CFR 772. 2011.
- U.S. Department of Transportation, Federal Highway Administration, Highway Traffic Noise: Analysis and Abatement Guidance, FHWA Report No. FHWA-HEP-10-025, December 2011.
- U.S. Department of Transportation, Federal Highway Administration, Measurement of Highway-Related Noise FHWA Report No. FHWA-PD-96-046, May 1996.
- Virginia State Noise Abatement Policy
- Code of Virginia Noise Abatement Practices and technologies, Section 33.1223.2:21. 2013, (HB 2577).
- Virginia Department of Transportation, Highway Traffic Noise Impact Analysis Guidance Manual, approved March 15, 2011, effective July 13, 2011, updated July 14th, 2015.
- Virginia Department of Transportation, 2007 Road and Bridge Specifications, Section 107.16(b.3) "Noise."


## APPENDIX K

List of Preparers and Reviewers

## List of Preparers / Reviewers

## McCormick Taylor, Inc.

## Josh J. Wilson

Senior Transportation Noise Analyst
Education: B.S., Geo-Environmental Studies
M.S., Geo-Environmental Studies

Professional Experience: 15 Years
Role: Project Coordination, Noise Monitoring, Report Preparation \& QA/QC

## Jack Cramer

Senior Air Quality \& Acoustical Scientist
Education: B.S., Geo-Environmental Studies
Professional Experience: 16 Years
Role: Report Preparation \& QA/QC

## Adam Diltz

Air Quality \& Acoustical Scientist
Education: B.A., Geography \& Environmental Planning
Professional Experience: 3 Years
Role: Noise Modeling, Report Preparation \& QA/QC
Virginia Department of Transportation (VDOT)

## Lovejoy Muchenje P.E

Noise Abatement Specialist
B.S Mechanical Engineering

Years of Professional Experience: 8
Role in the project: Reviewer/Noise Study Project Manager


[^0]:    Calibration Certificates of Test Reports shat not be feproducen，except in full without whiter aporoval of the taboratory，
     of any agency of tie federal govemment．
    Document stored ZhCafibation Lab\SM 2015hRONLA2＿01122580 MEdoc

[^1]:    *Distances in the photo above are from noise meter to nearest structure and from noise meter to edge of pavement of the closeset travel lane measured in feet.

[^2]:    McCormick Taylor, Inc

